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Abstract

Natural water encroachment is commonly seen in many oil and gas reservoirs. In
fact, overall, there is more water than oil produced from oil reservoirs worldwide. Thus it
is clear that an understanding of reservoir/aquifer interaction can be an important aspect of
reservoir management to optimize recovery of hydrocarbons. Although the mathematics
of these processes are difficult, they are often amenable to analytical solution and
diagnosis. Thus this will be the ultimate goal of a series of reports on this subject.

This first report deals only with aquifer beﬁavior, so it does not address these
important reservoir/aquifer issues. However, it is an important preludc'e to them, for the
insight gained gives important clues on how to address reservoir/aquifer problems.

In general when looking at aquifer flow, there are two convenient inner boundary
conditions that can be considered; constant pressure or constant flow rate. There are
three outer boundary conditions that are convenient to consider; infinite, closed and
constant pressure. And there are three geometries that can be solved reasonably easily;
linear, radial and spherical. Thus there are a total of eighteen different solutions that can
be analyzed.

The information in this report shows that all of these cases have certain similarities
that allow them to be handled fairly easily; and, though the solutions are in the form of
infinite series, the effective results can be put into very simple closed form equations.
Some equation forms are for shorter time results, and others are for longer time results;
but, remarkably, for all practical purposes, the solutions switch immediately from one to
the other. The times at which they switch depend on the sizes of the systems being
considered; and these, too, can be defined by simple equations. These simple equation
forms provide great insight on the nature of the behavior of these systems.

Real field aquifer data are never at constant pressure or constant flow rate. This
fact, however, can be handled easily using the superposition integral. This report also
discusses this idea and its application, and shows how the simpler analytic solutions make

this superposition process considerably easier to perform.
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Introduction

The recovery from many 6i1 reservoirs is affected by water influx, either from the
perimeters of the oil reservoirs, or from below, or from both. In fact, worldwide, there is
far more water produced from oil reservoirs than oil. Much of this is natural water influx.
It is clear then, that an understanding of the interplay between aquifers and the oil
reservoirs needs to be understood to properly perform oil recovery calculations. I
mentioned bottom water earlier, and it is often important, but the material here will
concentrate on peripheral water influx -- for even that subject can become quite complex
to understand and anaiyze. Well have to defer discussion of bottom water for later notes.

Typically, when one looks at discussions of water influx in reservoir engineering
texts, the subject is treated as though only the aquifer needs to be looked at. With this
view, the various inner and outer boundary conditions and geometries are addressed, and
solutions on the behavior of the aquifers are discussed. From these, various ways of
solving these problems are presented, assuming one knows the inner boundary rate or
pressure history.

This approach is useful academically, for it is relatively easy to do, and it also is
useful to give insight into the nature of aquifer flow. For these reasons it will be discussed
here in some detail. Unfortunately, it is "not" very useful for real reservoir problems, for
typically we cannot define the inner boundary condition for the oil reservoir/aquifer system
in any meaningful way.

\ These boundary condition dilemmas arise in two different ways. One is when
trying to history match past performance of an oil reservoir/aquifer system, and from this
match, to infer the reservoir and aquifer properties. The other is to predict the future
behavior of the reservoir/aquifer system under varjous assumed operating scenarios. Both
of those problems are important from a reservoir engineering and reservoir management
point of view. These should be the ultimate goal of the reservoir engineer. Fortunately,
methods have been devised to solve these problems in an analytic manner. Thus these

problems, though difficult, are amenable to solution as will be shown in later notes.




In these notes I will discuss these various problems in the order of their complexity
of solution rather than in the chronological order in which they would be used by a
reservoir engineer. The reason for this is simple. The ideas from one group of concepts
can thus be built upon for the next group. In this set of notes, Il address aquifer flow

solutions. Later notes will address reservoir/aquifer interaction.

Aquifer Flow

The equation we use for aquifer flow is the diffusivity equation; the same one we
use in well testing theory for undersaturated oil reservoirs. Also the geometries used are
the same; linear, radial and spherical flow. Although these equations are well known, I1l

repeat them here for later reference.

Linear Flow
32 9
D _9uc; dp ¢))
==
o k ot
Radial Flow
2
9p 1 _¢ucdp @
o2 ror k ot
Spherical Flow

2
Op, 20 _oLcdp 3)
ar2 r or k ot

Those who are familiar with well testing useage know that in oil reservoirs,
all the terms; ¢, 1, ¢z, and k in the diffusivity term can be a problem in practical

application. In aquifer flow this problem is far simpler, for the only fluid flowing is water,
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thus both pand ¢; remain nearly constant. Usually in aquifer flow, the variation of
k¢ with pressure is ignored, for it does not change nearly as much as it does in oil
reservoirs. The effect of k/¢ variation was discussed in considerable detail by Samaniego
etal. (1979). '

As is done for reservoir systems, Eqs. 1 - 3 are usually changed to

dimensionless parameters. These following equations result for linear flow,

2
9pp _ 9pp @)
xd  otp

where the dimensionless terms used are as follows:

xp=x/L (5a)
and
ip = ke 5 (5b)
pucL:
where

L = The length of the linear aquifer

And, as in well testing, the definition of pp depends on the inner boundary conditions

chosen. If a constant rate inner boundary is used, pp is defined as,

KA(p — p:
Pp = (p—pi) 50
quL
where
p; = initial aquifer pressure
A = cross sectional area of the aquifer

If a constant pressure inner boundary is used, then the definition for pp is,

_pP-p
bp=—"-
Py —D; (5d)
3




where p,, = inner boundary constant pressure

Note that the subscript, w, is usually used at the inner boundary just as it is in well
testing, even though the inner boundary is not a well; rather, it is at the original boundary
of the oil reservoir/aquifer system.

The dimensionless equation for radial flow is,

2
d I;D + 1 dpp =aPD ©6)
arD )] a’D atD

where some of the dimensionless terms are,

rp =rlr, (7a)
tp =—o— (7b)
P Ucry

These equations should look familiar to well testing engineers. Note that the term, r,,, is

commonly used to define the original oil reservoir/aquifer radius. It’s handy, for it
emphasizes the similarity of the two systems; but it is also confusing, for one has to be
careful to remember which radius is actually being considered in the equation. B

The dimensionless pressure for the constant rate inner boundary of a radial system

pp =B 7o)

qu
and for the constant pressure inner boundary, it is Eq. 5d again. Note that these, too, are
the same as commonly used in well testing.
Spherical flow is not very common in aquifers; but it can occur whenever there is

an oil reservoir "bubble" surrounded on all sides and at the bottom by a very large aquifer.




So this equation will also be addressed briefly in these notes. The dimensionless equation

is,

pp . 2 dp _dpp
+ = ®)
ar% rp drp otp.

In this case, rp and ?#p are defined the same as in radial flow, Eqs. 7a and 7b.

Dimensionless pressure at constant rate is defined as follows,

_Ankry(p — p;) ' ©)

Pp
‘qu

Note the similarity to Eq. 7c. The constant is 4n because of the changed
geometry, and the distance term in the numerator is r,,. For the constant pressure inner
boundary, Eq. 5d is again used.

’ The spherical flow equation can be simplified in an interesting way. Suppose that

we define a new dimensionless variable, by, as follows,

bp =1ppp (10)
When we do this, Eq. 8 simplifies to,
9*bp b
———211 = 8]
aTD al'D :

Thus the spherical flow equation becomes identical in form to the linear equation. This
transformation always can be made for the diffusivity equation, and for its steady state
equivalents, the LaPlace Equation, or Poisson’s Equation. The boundary conditions will
be expressed somewhat differently, as we will see in our later discussion of this geometry.
We turn now to solutions of these equations for various geometries, starting with
the radial geometry, for that is the most commonly used in reservoir engineering

evaluations.




Radial Geometry

In general, for all aquifer geometries there are two convenient inner boundary
conditions that can be used: constant pressure or constant flow rate. If there is a known
pressure or flow rate history, the idea of superposition can be used. This is an effective
procedure, and it will be discussed in some detail later; but first, we will discuss the nature
of the various solutions that can arise from these boundary conditions.

There are also reasonable assumptions that can be made for the outer boundary:
constant pressure, closed or infinite. Thus there are a total of six possible solutions
available which should be considered in some detail. These will be discussed and grouped
together in a logical manner to show their differences in behavior, alid the reasons for

these differences.

Constant Rate Inner Boundary

We will look at the results obtained for all three outer boundary conditions
for the constant rate case, compare them, see how they behave at short and long time, and
write simplified equations for their short and long time behavior. To do all this, we will
rely heavily on Chatas’ tables from the Petroleum Engineer series which started in May
1953, of which the important part is duplicated and attached. Chatas’ tables borrowed
heavily from work originally done b-y Van Everdingen and Hurst (1949), but are more
compact than their work was. Chatas’ nomenclature is different from the nomenclature we
commonly use in petroleum engineering today (as was Van Everdingen and Hurst), so I
will clarify these differences as they arise.

Infinite Aquifer

The first constant rate solution we will look at is for an infinite aquifer. The
solutions are shown in Table 1 by Chatas. His nomenclature in the table refers to

dimensionless time, and labelsit, . We now use tj,. The heading labeled pressure




A Prqcticql Treatment of Nonsteady-State

Flow Problems in Reservoir Systems

Part 3 {Appendix) Practical information is presented in the form of iables,
definitions, and a complete resume. of the Hurst-van Everdingen equations

Definitions

1. Annulus Problem. The determina. -

tion of the flowing bottom-hole pressure
history of a flowing well, undergoing a
flow test, that produces through tubing
at a constant surface-rate of production.
During the test some of the oil comes
from the pay formation, but some is also
%aﬂed (firom.tbs annulus between the
ing and casing, .

2. Annulus Volume Adjustment. In
the “annulus problem” the volume of
fluid anloaded from the annulos per unit

pressure drop per unit sand thickness..

It may be expressed approximately by
w (12 —127)
which in dimensionless form becomes
_ T Fe—1pde
T 2R p oot

3, Boundary Conditions, The location
of the interior and exterior houndaries
and the specification of pressure and/or
flow at thess boundaries at a given in.
e S indoey Variations. The changss

0, ‘ariations.
in the houndery conditions of & reser-
voir system u.ndergoinz exploitation.

5. Continuous Succession of Steady
States. A method of solving flow prob-
lems in a reservoir that suffers
boundary variations but folfills instan.
taneous steady-state conditions, Thes hie-
tory of such & system is divided into an
appropriate number of stages, each. of
which is treated by steady-stats analysis.

6. Dimensionless Time Ratio. The di-
mensionless ratio defined by the follow~

ing relations:
Radial System

. =

C

kg
& poety?

Lincar System .
k6 _ K6

Dpoex® MG

7. Fluid-[nﬂwc' Terms, Texms that ap-
the Hurst-van Everdingen equa-
tion which treats the “pressure case.”
Such a term, denoted I]Jy qft), is a di-
mensio: , numerica enti .
senting the total volume ;zfu ﬂﬁﬁm
thickness that passes the interior bomn.
dary of & reservoir system over the time

*Magnolis Petroleam Co:ai;any.

B-44-

tT=

. ANGELOS T. CHATAS*

~ ‘TABLE 1. Infinite radial system — Rate case.

irg change time tms change

timy change timy change
t 20 t Pt} t 0] : .0}
e - 0 .08 2500 1, L1645 150, 9212
005 0280 .07, 2850 4. 2130 200. . 0638
» L001 L0252 .08 3345 & .3625 250. ,1728
.002 L0485 ] 2099 [X 4382 200, L2830
003 L0608 .1 3144 7. 4857 350. 3394
004 0834 15 3780 X 8857 400, 4057
.008 0774 2 4241 9. 8057 450, L4841
008 0848 .8 5024 10 8308 800, 5184
o 91t . 5845 15, 8204 £30. 5843
008 - L0971 5 8187 2. 9601 €00, 8078
009 1028 . .8 88z . 30, 1470 650, 6478
.01 1o 7 7028 40 e 700. 6842
018 1312 .B 2387 0. 3884 750. L7184
.2 1503 9 W18 - 0. 4758 am, 7505
025 1689 1.0 8019 0. 5501 850. .1808
.03 1318, 1.2 . 8. 8147 $00.0 8083
.04 2077 14 L9160 0. 2.6718 $50. 3.8355
.08 2301 2.0 1.0195 100, 2.723 2000, 8584

apan t = ty=~1;, which is caused by a
unit pressure drop at this boundary at
time t,,

8. Infinite Reservoir System. A xeser-
voir system antlyzed over a period of
time doring which the presence of an
exterior bomndary is not felt.

9. Linear Reservoir System. A system.-

y8
defined by two parallel planes, which

sarve as boundaries, over which pressure -

and flow are specified according to pre-
ed conditions, and whose physical
with the

roperties of interest vary only
-Derpendienlar distance % between the
two planes,

10. Noweady-gza:c Flow. II:; reser-
voir systems undergoing exploitation,
fluid flow that is characterized predomi.
nately by time variations and necessi-
tates the formel introduction of time as
an explicit varisble in the basic fiow

€ ns. |

1). Qil Field Equivalent. An oil field
lomped together such that its outer
Limits serve as the interior boundary of
o e arerage ol et ecsem
o average pressure, an
with a flux e to the surm of the floxes
of the individual wells, ;

12, Pressure Case. In the analysis of
2 reservoir system the situation that pre-
sumes knowledge of the pressure history
and predicts the cumulative fluid influx.

13, Pressure Change Teams. Terms
that appear in ths Hurst-van Everdingen
equation which treats the “rate case.”
Such a term, denoted by p(t), is a di-
mensionless, numerical quantity.repre-
genting the change in pressure at the
interior boundary of a reservoir system
over the time span t =ty —1, which
is caused by a2 unit rate of production

per unit thickness at time ¢,
14, Pressure Correction Terms, Terms
eppeer inthe Hurst-van Evendingen
equation which treats the “annulus prob-
lem.” Such a term, denoted by p(t), is
a diminsionless numerical quantity rep.
resenting the total pressure drap in the
well bore, which is cansed by a unit rate
of production at the surface and is cor-
rected for the unloading of fuid fro:
apnulus, -
15. Radial Reservoir System. A
tem defined by two concentric circ
cylinders, which serve as boundaries,
over which pressore and flow aréd spe-
cified according to prescribed conditions,

and whose physical propérties of inter. -

est vary only with the distance r from
the axis of symmetry.

16. Rate Cose, In the analysis' of a
réservoir system the situation that pre-
sumes knowledge of the production or
fluid-influx rate history and predicts the
cumulative pressure-drop for a reservoir
at its interior boundary.

17, Steady-State Flow. In reservoir
systems undergoing .exploitation, fluid
flow whose time variations are insignifi-
cant, and, which permit the formal

of time as an explicit varisble
in the basic flow tions, :

18. Time of Readjustment. The ap-
proximate time required for the read-
justment of the internal pressure di
tribution in a reservoir system to s
steady-state distribution when pressure
variations occur at the boundariss. For

. radial systems this time is given by

- - geat
b2 =4%/a
while for linear systems it is

THE PETROLEUM ENGINEER, August, 1953
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"where it can be nated that P,,

" sumes knowledge of the presswe

e .

2k/p
Hurst-Van Everdingen Equations:
A. Radial Systems, '

1 Rate Case. The rate case presumes
knowledge of the production or flaid-
inflox rate history and predicts the cu-
mulative pressure drop for & reservoir’
system at its interior béundary. This
pressure drop is given by the simple
algebraic equation

fp =

o bi) =i
{Qe8.) » (1) 4-10(6,) — Q(8.)1 X
P(tr—t,) -+ [Q(0,) —Q(4,)1 X"
Ple—1,) +...+[Q(6;) —
Q(b-1) 1 p{tie—1.)}
3 m kb,
and Q(6;) are obtained from fisld data®,

Thus, to obtain P (r,, 0), the pressure
at the interior homdary of a system at

time @y, one need only further deter-

mine the pressure change-terms p(t)
with t=ty—t;. These terms may he
detexmined for the ensuing types of sys-
tems as followa:
Infinite system. -

t <00l p(t) =2V t/x

0.01 < t < 100 see Fig. 1 or Table 1

t>100 p(t)=1/2(lnt4-0.80907)
Finits system with closed exterior
bomndary :

t1<00l p(t) =2V t/r

t > 001 ses Fig. 9 or Tablz 4

(1/24-2t) _
[(xo/re)?—1]
[3 (rQ/rw) ‘_‘4(1'0/:')‘]”':0/" -

2{r./1y)3—1
4L (re/ry)?—1]

Finite system with fixed constant pres.
sure at exterior boundary .

t <001 p(t) =2Vt/z7
t> 001 see Figs 10, 11, 12, and 13
or Table 5

large t p(t)'m«lnr,/r,

" larget p(t)

2. Pressure Case. The pressure case
treats the inverse problem of determin-
ing the cumulative flaid inflox, and pre-

at the interior boundary of a reservoir
This

system. cumulative fluid influx 4s
given by the similar algebraic equation
Fo(8y) =2= gegryh
{(P—P(8,)1 alts) + pes,) —
P(6,)] a{ty—t,) +[P(8,) —
P(6,) I g(ty—t,) ...+
[P(0:—) — P(6a) T altye—t,—)}

* Sometimes these gquantities directly
availsble from fleld dqua. and Yo et

the empirical ap-
tory cl“t wystem proves mz”mﬁ;ir
: P! W or

TABLE 2. Infinits radial system — Pressure case.

Diindesion. | Dimanst * Dizisoel Dimensd 3 .
s Thid ln Fluid lew  Fluid  les  Flud len Fuid [ . Ploid
time inflix  time infigx tims ioflux - tmme  iaflox time influx time inflox
¢ qf) ¢t qft) t ot} t ) t q(t) t Q(t)
,00 0,000 o 38607 485 150,240 1100 340.848 3250 818.000 358,000 8780.47
.01 0,113 80  38.088 460 151640 1200 243.30% 8200 083 ,000 7850,008
.05 0,278 81 38.418 485 150.029 1210 2570 33X0 &8.067 50,000 $383.009
.10 0,404 2 B! 470 154.416 1220 2A4B.230 00 849,038 000  11,047.208
18 0,320 & 37.138 475 185,801 IZ5 39.480 SMB0 850,074 70,800 12703.358
.20 0,606 84 3.4 480 157.184 1230 850.858 2800 0.902 73,000 13,831,457
.25 0.630 8  3.851 485 168,665 1240 353.144 3550 231818 80,000 14280.121
.30 0.758 88  38.207 400 150,048 1250 285557 3800 £93.712 90,000 15975.289
.40 0.828 87 38.563 495 181,333 1260 353,043 3850 ©03.504 100,000 17,588.334
50 1,020 23 38,9019 500 182.638 1470 300.403 300 914.450 125,000 ~ 31.580.732
.80 1.140 &8 22 510 185444 1275 381720 3750 925,309 . B:B(L0F  2.538(10)¢
©0.70 1.351 90 3p.428 520 183.183 1230 382.942 3800 938.144 :3. : .308
.20 1.38 91 047 B35 189, 1200 285,338 3350  948.988 . 088 *
.00 1.489 $2 40.331 530 170.914 10 27,838 2000 QEI.TTR .0 ¢ 817 ¢
549 3 40.¢54 540 178830 1310 370,287 - 2050  §58.846 .0 4 287 4
447 84 41034 580 357 1320 3704 4000  OTD.344 .0 “ 680 ¢
203 98 41,385 550 179,080 1325 P73.e22 4050  €40.108 .0 ¢ L1183 ¢
893 ~ §8 . 41735 ° BT0 1MLL774 1330 $75.130 4100 1000.838 .0 081(10)%
539 97 42,084 E75 188.124 1340 377,573 4150 1011.685 .0 77 189 %
.153 98 432.433 530 18473 1350 280.003 4200 1022318 .0 ¥ .328
743 90  42.781 50 187,183 1360 332.433 425 1033.028 (100  1.482 ¥
314 100 43.129 600 129,852 1370 384.8%0 4300 1043.734 5% 128 ¢
850 105  44.388 610 192,833 1375 386,070 4350 1054.409 .0 ¥ LT81 ~
10 411 110 48.574 820 185,208 - 1380 337,283 4400 1065.033 - A7 -
1 840 115 48,277 625 108.5¢4- 1300 289,705 4450 1075.743 .0 " 064
13 457 120 40.968 &0 107.878 1400 302,125 4500 1088.200 .0 313 7
13 .64 135 5l.8d8 40 200.542 1510 334,843 4550 1097.0%4 .0 “ 844 4
4 481 130 53,317 650 303,201 1420 398.859 4500 1107.648 L0 “, L7781
15 .04 135 54078 650 205,254 1425 - 398,167 4850 1118.257 0 “ 908
18 10.43¢ 140 EB.835 670 208,502 1430 SOR.3T@ 4700 1123.8%4 .0 ¢ 0180108
17 10013 145 58,265 €75 200.835 1440 401,788  4TE0 1139.430 .0« W34 ¢
18 1.988 150  39.803 880 211045 1450 " 404.197 4800 ,012 J10)T 1,253 ¢
19 .11.B88 156 B1.517 €30 213.784 1480 €08.608 4850 1180.574 5“4 328
20 819 180 8£3.131 700 218417 1470 409.013 4500 1171.125 X B 338 “
21 13,778 188 84.737 710 219.048 1476 410214 4350 1.668 5 ¢ 981
2 1333 170 6.8 720 221.870 1480 411.418 5000 192,188 0 “ 817 -
3 13.68¢ 175 67,928 725 222.950 1490 413.820 5100 1213.222 X B 810 “
24 14131 180 ° &Q.512 730 224280 1500 416,220 5200 1234.203 .0 889 &
25 14,673 188 71.030 760 228,004 1825 422214 3300 1235.141 “ 788 *
28 5.013 190 . 881 750 220.514 1550 428,188 5400 1276.037 “ 818 *
27 15450 195 74.226 780 232,120 1573 424,188 3300 1208.893 “ B38 *
28 5.883 200 75.785 W0 24721 1600 440.138 5300 1317.709 ot 011 «
2 16313 208 7.8 75 28,020 1825 448077 5700 1338.484 X10¥  1.095(10)?
0 742 210 78.888 380 207218 1850 452,018 8800 1350.228 5 ¢ B04 4
31 17.187 313 80.428 790 230.012 1878 467.045 5300 2379.827 .0 “ 108 *
32 17.800 220 81085 800 242,501 1700 463,883 6000 00,503 5 L807 .
-33 1801 225 83497 810 245.088 1723 480.771 8100 21,224 .0 L1100 ¥
B4 429 230 85,023 820 247,688 1750 475.880 4200 1441.820 .0 “ .07
35 1885 235 SS.M5 S35 38.057 IME 4B1.858 8300 MA3383 g0 ¢ 8002 ¢
26 25 240 88.063 830 250.245 1800 487.437 6400 482,912 0 “ 034 ¢
“87 19,671 245 BQ.575 -840 283,819 1825 493.307 8500 1503.408 .0 ¢ .928 “
a8 030 280 Q1084 8%0 285388 1550 4oml167 GO0 IBIZ.873  gg M 7.686 “
30 20.4%8 255 92,589 860 257,953 1875 S05.010 8700  1444.305 XN 707 ¢
40 L804 280 94,000 810 260.516 1300 B810.881 8300 1584.708 J0(10f  9.728 ¢
s 208 2685  §5.588 876 361796 1028 516,695 6000 1585.077 B .429(108
42 21,701 310 07.081 830 263,073 1950 522,820 7000 1605.418 .0 ¥ 880
43 33101 375 93671 290 285.629 1075 528,337 7I00 1625.729 5 “ 328
4 22800 350 100.087 900 283,181 2000 K34,145 7200 1648.013 “ Aol
48 23,897 2385 101.540 910 270,720 2038 B9.045 7300 1668.285 “ 845 ~
46 23201 200 108.019. 920 273.274 2050 B545.737 7400 1688.490 0o 510
47 , 23,884 295 10448 925 274.545 2075 551 7500 1706.888° g0 “ ; 5.388 “
43 © 24078 300 105.9€8 $30 275.816 2100 557. 7800 1728.850 0% 220 ¥
49 34488 05 107.437 940 278.353 2125 &&. 7700 1747,002 0" 088 %
% 34,258 310 108004 | 050 230,883 150 563.830 7ROO0 1767.130 0 ¥ 009 ¢
81 25344 315 110,387 §60 283,430 2175 , §74.585 7000 1787.31%- 1. X10)R 8.747 ¢
§3 25633 320 111.%27 970 285.943 2200 ~ 530. 8000 1807.278 B zsa(xg)l
& 20,020 3% 113.284 975 2%7.211 2205 k88,072 B1OO - 1837.310 .0« 807
3 -28.408 330 114,738 950 288473 2250 51,806 8200 1447.338 5 103 ¥
55 26,791 3356 118,189 900  200.995 2375 597,532  B30Q  1847.329 0 ¢ 505
58 2.17¢ 340 7.8 1000 2N3.516 200 .252 2400 1887.298 0 “ 298 ¥
87 271555 M5 115,083 1010 206.030 2335 085 BS00 1007.243 0% 4,087
58 37,835 350 120.520 1020 208.348 2330 614.672 8500 1937.168 .0 % 4.888
3 23314 355 13210637 1028 200.700 75 €20.372 8700 1947.085 o 43 ¢
60 23601 380 123.403 1030 -301.083 2400 €26.086 8300 1988.842 .0 414 ¢
61 20,008 385 124838 1040 303.560 2435 631785 5300 1986798 g p 183
62 29443 370 128.270 1050 308.085 2430 €37 $000 2008.628  l10¢ F.643 <
61 29818 375 127.089 1080 308.587 2475 643.113 Q100 2026.418 5 L17(108
& 30,192 380 120,128 1070 gn.ou 2500 648.781 9200 2046, 0 85
€5 30.585 335 120.850  107S. 313.314 3550 660.008 0300 2065.0906 X 92
8 30837 300 131,972 1080 313,582 2800 O71.379 9400 2085.744 0™ .23~
47 31,308 395 133.391 1080 316.065 - 2850 8R2.8(0 G500 2105.473 4 0¥ 03 ¥
43 31,470 400 134.808. 1100 319.845 2700 €93.577 9800 2125.184 5.0 “ 15 “
60 33.048 405 135223 1110 321,032 2750 705.000 - Q700 2144.878 L0 * A7 =
0 22417 410 7635 1120 W57 2800 718.3%0 9500 2IM.E8S 70 « ‘19 *
71 33,788 415 130.045 1125 "324.780 2880 727.440 900 3184218 .0 “ 80 ¢
72 33.151 420 140.483 1130 326.000 2000 733,598 10,000 2203.861 .0 ¥ .58 ¥
73 88.817 435 141.883 1140 323480 2950 74D.725 12500 2683.967 0205 733 *,
74 $3.883 430 143.2602 1150 330,958 2000 R 15000 3184.780 B ~oa(10)
7 H.UT 435 148K 1160 233.433 3080 923 17500 3633368 3 ¢ 143 4
76 34.611 440 1485064 1170 335.908 3100 782.552 20,000 4095.800
T 974 45 17481 175 [I42 8150 X 25,000, 5005.728
3 35338 450 3.858 1150 38,378 805.078 30,000 5889,

where again all the terms on the right
hand side of the equation, except the
fluid-influx terms q(t), mdy be obtained
from field datat. The fluid-influx terms
may be determined similarly as follows:
Infinite system .

t <001 g(t) =2t/
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t > 001 See Figs. 2, 3, and 4 or
Table 2.
Finite system with closed exterior
boundary

t < 001 Se€q(t) =2V t/r
t > 0.01 See Figs. 5, 6, 7, and 8 or
Table 3

lerget q(t) e [(x./rw)*—11/2
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EXPLANATION

oF .
' SYMOLS.
A == proven sres of ull feld
A’ = agtimated ares of aguifer
B = bulk sodulus of reserveir fuid
Cm Mﬂun"mulmvdm
djmw-"
| G o azhitrary consaxt
¥, = canzlative Influz of Buid
G = s rate of Sow
1, = padiiad Benal funciien of the
% fiset kind and erder 3210 °-‘-
' Is -Bou]tualuaeilheﬁmkhd
and erdern -
R.-uodlﬁeddeiunumdm
steard kind and onkr sere !
P = pressune :
Pg = (ransforn of pressare ot

Py == prossure at 8 boundary
Pap = bubble point pressure

P, = prossurs a1 enerior boundary:
efloctive seservoir pressure

Pp = Bowing becton hole pressore
1’= == origins] reservoir pressure )
P, = praasure ot interior bnusdary;

Q = velume rate of flow; nverage
rate of production

Qe = translorm of preduction

Q, = volume rate of flow measured
a1 the slock tank

¥, = cumnulstive water influx into
oll feld

X o= arblirary funciion
Yy = Bewssl function of the second
kizd and erdera
am ma-uetiuul pesp:a\ik
, wlar 1 the dirsciioe of fow'd
Yneay sysiam o
c = spoed of scund

¢ w= compressibllity of fluid °

¢y = compressibility ofell = -
ty == compressibility of water

g == gravitatisnal acceleration

I & et efiective formation thick.
nng

LY

TABLE 3. Finite radial system with closed exterior boundary—Pressure case.

tofrwmib refrwm3,0 refrw=2.8§ @re/iwmd,0 ro/rwm=3.5 toftwsd 0 ro/rwmd.S
Ce— o —_— oo e—— = Y
less  Fluid  Jess Fumid  lsss  Fhuid - Jess Flud  Jes Find Jesa Finid Jese Flaid
time influx tims influx  tims iafux  time mfux  time jnf time inffux time infux
t q® t qft) t aft) $° qt) t Q) t qt) t qt)
.0(10)2 0,278 5.0(10)0.278 1,0{10)7 0.408 3. 71 0.788 1.00 1671, 00 2.442 2. 835
3 ("). ,304 0(2') HE ‘0( “) ,809 48(1‘9) 885 1,20 1.761 220 258 3. 196
.0 ¢ 330 .0(10)"‘ 404 2.0 ¥ 048 5.0 .03 10 0 - 240 2,748 3. Kxrd
.0 ¥ L3564 1.25 ¢ 0.488 3.5 ° 831 6.0 ¢ J43  1.60 3,111 .60 2.803 . 4. 28
K 376 1.0 4 0.5307 3.0 ¢ 758 7.0 ¥ 25 180 2.3713 .80 3.034 - 4.5 "4.188
.0§10)-1 0,385 1.75 * 0.853 $.5 ¢ 623 8.0 ® S8 2,00 2427 .00.3.170 5.0 A£.454
Qe , 414 2.00 “ 0.507 4.0 “ L2897 9.0 % 1488 320 28574 3.25 aM4 8. 737
2% 0431 2.25 ¢ 0.038 4.5 ¢ 082 1.00 1.8 2,40 32.715 3,60 d.493 6. 988
3 ¢ 446 2,50 ¢ 0,878 5.0 % 024 1 J91 260 2849 3,75.3.45 6, 231
4 0L 2,95 ¢ 0,718 B.5 ¢ 083 L.50 897 3,20 2976 4,00 3.792 T, 484
8¢ 474 3.00 “ 0.751 8.0 40 1,76 186 3.00 3.008  4.35 3.2 7, 854
.6 Y. 0,488 3.25 ¥ 0,785 8.5 “ 185 2.00 383 3,25 3.242 450 4.088 8.0 -8.%2
T 407 3,50 ¥ 0.817 7.0 “ .oi8 325 807 3.50 3379 .76 4,198 8, 089
8 % 807 3,756 ¢ 0.8(8 7.5 * 1289 2.50 268 3.75 33801 .00 4323 9. .378
K- B 517 4.00 * 0.877 3.0 “-* 1.248 2.75 773 4,00 3.823 .50 4500 9.2 . 452
.0 ¢ L.525 4.25 “° 0,005 8.5 “ 1305 3.00 8 425 3742, 6.00 4779 10 622
L1 “ ,523 4.50.% 0.832 9.0.% 1440 3.25 000 4.50 850 .50 ‘4.882 11 .$30
.2 ¥ 841 4,75 < 0,958 9.5 4 484 8.50 0c4 4,78 3.951 00 5,100 12 208
3 4 0,548 5.00 ¢ 0,983 1, 528 3,75 .3.150 5.00 4047 7.50 533 13 457
4 “ LS54 5,50 * 1.028 1. 805 4.00 247 5,50 - 1.222 .00 5.504 14 880
L5 ¢ .869 6.00 * 1,070 1. 570 4.35 317 6.00 4.3718 .50 5.853 15 830
.8 « B85 6.50 4 1,108 1. 747 4.80 381 6.50 4.518 .00 8.700 16 060
2.8 “ 674 7.00 4 1,143 1. 811 4.75 439 7.00 4.639. 9.50. 5.017 19 . 383
.0 “ .882 7.50 4 1.174 1. 870 §.00 491 750 4749 10 ° 6.85 20 611
3 % .633 8.00 * 1.23 1. .924 530 3.581 3.00 4.848, 11 248 22 809
4 “ 534 9.00 4 1.253 1. 975 8,00 858 3,30 4532 12 425 24, L. 963
.8 4 L5090 1.00 295 1. .02 6.50 3.717 9.00 5.00 13, 880 28 ° 9.097
.8 603 1.1 330 2. .108 7,00 2767 9.5 5078 14 W12 28 200
' 40 ¢ 608 1.2 .358 4. .178 7.80 809 10.00 5,138 35 825 30 _.9.283
.54 0,013 1.3 382, 2. .21 8,00 383 1 281 18 02 34t 90s
. 507 L6IT 1.4 4027 2, 294 9.00 .3.84 12 W21 17 004 38 482
- 6.0 ¢ 621 1.6 432 2. .340 10.00 3.838 1. 385 18 7.078 42 532
0 4 828 1.7 444 8. 380 11.00 L8651 14 435 20 158 48 . 885
*© 8.0% 0.628 1.8 453 8.4 12.00 967 15 5.476 23 .23 80 588
.0 488 3. 451 14,00 985 18 508 24 £ 80 612
.5 487 4.8 .525 16,00 .93 17 831 28 7377 20 . 9.63
« .0 495 4. 551 18,00 097 18 851 30 434 80 823
. 4.0 499 6. 670 20,00 999 20 579 4 484 S0 9.8
5.0 .500. 8. 3.869 22,00 009 23 .611 33 7.481 100 9.828
. .813 24. 000 30 621 43 490°
8 819 -3 8.624 48 7.484
X 823 40 .625 80 7.407
. 10. L3624 .
refrwed. 0 * re/rwed.0 . ro/rw=T.0 re/rw=5.0 re/tw=0.0 re/rw=10.0
! " o Dimrasan~ Lot o Ty
time  joflox timo  infax time influx tme iaflux  time faflax time  jaftax
+ o t ) t (103 t aft) t qt) ] -q®
3.0 3.108 8.0 .148 9.00 6.381 9 8,861 10 7.417 15 9.945
3.5 542 8.5 840 9.60 7.127 10 7.398 15 9,945 20 12.32
.0 873 7.0 424 10 7.389 1 1.920 b 4 13.28 32 - BA
.6 103 7.5 002 11 7.902 12 8.431 z A3 ¢ AU 14.09
K] AR 8.0 478 12 8,397 13 8.930- 4% -13.98 2 14.85
5 4.702 8.8 537 13 £.876 1 9.418 28 14.79 3 15.28
0 074 2.0 785 14 2.341 15 9.885 28 R b 18.89
5 348 9.5 M7 18 9.791 18 10.352 20 16.38 a2 17,38
.0 .805  10.0 .23 18 10.23 37 0,82 2 81 M- 1818
5 884 10,5 838 17 10.65 13 1.38 at .82 a8 18.91
.0 004 11 L2187 18 11.08 18 1.7 38 82 38 19.65
.3 325 12 220 19 11.48 20 .13 as 19,19 40 20.37
.0 547 13 851 20 11.83 2 12.95 40 18.85 42 2107
.6 760 14 083 22 .58 - 3¢ 13.7¢ 42 2048 4 2.7 .
10 985 15 .458 , 24 .27 28 14.50 44- 1,00 46 2.4
1 B350 18 829 26 - 13.92 28 T3 49 21,60 438 .07
1 108 17 10,19 28 16.53 30 .92 48 .28 ET %)
13 L35 18 10.83 30. 15.11 3 1.2 80 n.2 a2 2.3
1 L339 10 10.85 35 18.39 38 18.41 82 .36 M 4.4
b+, .80 20 216 40 17.49 40 18.97 5 3.2 58 25.83
1 819 22 a4 43 18.43 45 .28 30 24,39 33 2811
1 38 24 28 -5 19,24 50 21.42 88 44,88 & 28,67
20 3L 28 12,50 80 .51 -3 22.48 60 25.38 83 28,02
=2 10,07 31 e 0 21.45 &0 23.40 85 28.48 70 29,2
24 10.25 25 40 88 2.13 0 2498 - 70 22,82 5 30.49
28 |, 1059 <] 93 00, 22.83 ] 20.%¢ F] 28.48 &0 1.8
2 10,80 &1 10.05 100 2.00 80 ar.22 20 29.38 85 22.67
20 10.08 6 1858 120 .47 100 28.11 85 30,18 o 33.68
H 11,28 7 1891 140 3.1 10 29.31 %0 30.93 23 34.60
38 1148 =0 17,14 160 285 M0 30.08 98 3.6 100 3548
42 11.81 0 W20 180 23.92 10 30.5¢ 100 32,27 120 38.51
46 a1 100 .36 500 296 180 3091 120 3429 140 40.89
50 .7 110 41 500 24,00 200 31.12 0 35.82 160 4.75
80 119 120 A5 240 NH 160 37.04 180 4421
0 11.96 130 48 290 3143 180 37.85 200 45.35
80 1198 140 .48 320 1.47 200 38.44 240 48,95
90 1199 150 49 360 3.4 0 39,17 280 7.4
100 . 12.00 160 49 400 31,80 0 39.38 320 48,54
129 12,00 1% 17.50 50 .. 3.0 320 20.77 360 48.91
200 50 R - 380 39.83 400 49,
220 7.50 £00 39.94 440 19.
440 0.97 430 19,36
480 39.98

3. Rate of Fluid Influx. The rate of
fluid ,influx has been presented as s
function of the Auid-influx terms and,
therefore, is & modification of the “pres-

sure case.” Thua the rate of fluid-infimx
at the interior boundary’of a radial res-
ervoir system is given at time gy by tis
algebraic equation

Qb — R)]_}_ (P(8;) —P(8,)]

Q (8x) = 27.'(#&,?'211 { LPO'.—P(al)] [q(t)f) =
! 1

p d see page E-45
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TABLE 4. Finite radial system with closed exterior bound

re/rw=l. 6 nlr'-z.o n/tv-z 5 ° refrww3,0 ro/rwwd.b refrw={.0
— ey e APy Fr— Mt
Tess Presmos  lees Pressure  less Pmm loas Presscrs Jess  Preoore  les  Premsure
tims changs  time changs  time change 4me changs  time chaaps  Hms  change
t P -t p(t) ¢ ')q 130] t (pt) t pt) ¢t p{t)
001002 0.351  2.3(10)7* 0.443 10 585 .3{10)% 0.627 ¥ .502 o 927
g,o“-?.) 388 4 458 4. X 876 4 “ 6836 . L. 830 N 048
1.0{10)* 0.322 .8 “ 478 44 4 857 N3 845 . 837 . .988
X 358 .5« 402 4.8 % ,598 .0 “ . 862 . 882 . 088
4 “ 357 .0 ¢ 507 4.8 % . 508 - , 681 o 008 .007
.8 ¢ .420 24 523 N .818 ot ,703 929 025
% gl 452 ot 538 3 % 826 5 Y 728 $31 059
.0, ¥ 484 . Rt 531 bt 633 “ . 740 973 092
.3 “ 518 -2 . 883 | “ . 847 - , 788 94 123
% “ 548 4.0 ¢ L5870 .8 857 0 ¢ 778 01 .184
“ 530 .3 ¢ 583 0 ¢ 8688 . 791 034 -184
“ 812 44 ¢ .607 %2 .68 . 808 25 1.083 -255
- 844 .8 631 .0« .710 0.885 .130 SU
bl 724 8 ¢ L 834 5 Y 731 L.920 78 1178 .392
o . 804 0 ¥ .48 3.0 753 L.973 221 480
“ L824 3.0 ¢ .715 8.5 “ .772 Q078 401 . 527
- ™ 954 .0 782 “ 703 < .328 579 594
“ 044 0 ¢ 349 " 813 578 35T 880
“ .12%¢ “ 915 | 832 .828 727
8 983 X 215 ‘ .81
X 8349 s .898. . X 944
5 2.318 4. 877 10. . 127
- B 3.88p &, 388 .
re/rw=4.5 re/rwm3.0 b 2 K] re/rwm7.0 15/Twm3.0 ro/rw=0.0 . rs/tw=10.0
X Ditmsasion-  Dimeosron- Dizession- Dimessions Dimensioas Dimeosioa- -
Tess dess Presurs Je= Jost  Precsure lea Prewury less  Pressurs less, Pressured
time change time change timo chinge time changs time ohauge” ime changs time  change
.t v{6) t plt) t bl t p(®) t () U p(t) t 0]
2. 02 167 4. .26 8. .43 8. 368 10, 851 13 .32
2. 040 180 4. .32 8. 470 8. 852 10, 673 730
2. 058 492 & .38 7. 50t 0. 1.807 11 693 13, .768
3.2 073 208 8. 408 7. 831 9.8 .81 11, 713 13 L84
3. 087 13X 41 8, 559 10. L8538 12, 732 14 201
2. .103 237 6. 477 B, 1580 10 875  12.] B0 M. 817
2. .116 288 7. B11 9. 812 11 897 18.| ] 15.1 £32
2. 130 LU T N TREER 88 11, JI7 13 38 18, M7
2. 144 .358 8. L5768 10, 1,883 12 .737 14, 303  18. 882
3. .158 270 8. .807 11, W11 19 JI57 W, .B18 17, 880
3. 71 4 L2814 833 12, -787 13, 748 15 83§ 18. 7
3. 197 4.2 1.301 9. .688  18. 810 13, 795 18, JB51 .10, 943
3. +322 331 .10, 898 14, 845 14, 813 18, 887 20, .988
S. 248 4 .30 11, 87 15, 888 U 831 17, B97 22, 087
3.3 1.380 x L3650 13, 818 18 L0231 15, .B43 18, D28 24 .083
4. 292 X 318 13 78 17, S74 17, 919 10, 985 28, ,108
4. 349 ¥ 48 14 531 18, 018 10, 088 20, 983 28, 181 1i
5. 403 L0 a.18) 488 18, .058  31. 051 22, 037 . 30. 104
5. 457 K 1.513 16 045 20, 100 23, L1188 24, 090 2. . 238
[K BI04 556 17, 103 22, 188 25, .180 23, 142 M, .37R
7.0 18156 5 1.508 160 24 267 3D, L340 28, 192 30. .319
§. 19 .. 841 10, 2.217° 26 351 35, 499 30, 244 38, 350
9. .83 , 338 20 «274 28 434 40 84, .245 40, .401
£0.! .827 2D 808 25, 2,580 20, 517 48, 517 33 448 B0, . 804
11| 031 11, 203 50, 2.848 49, 408 60. 808
1. 135 13, 975 45, .831 70, 008
130 3.:m9 13.0 2.08 R 0. 748 |
1 S 140 2,43 :
5.0 3447 150 2028
q{ty—t, ) —q{ta—t;) Gty ) —q(ti—ts)
X|——F——=|+t1P (9-1)—1’ (62)] R~ i
L a:—a 2~ Uneq

" where the fluid-influx terms, g (t), arc determined for the various boundary conditions
in the manner prescribed above for the “preséure case.”

B. Linear The corresponding expressions for the rate case, pressure case,
and rate of fluid influx for infinite Jinear svstems are as io'llows~

. Rate Case
2,—P(0, 83 == —-‘—‘——{Q(Go.) Bz + 10(6,) — Q601 V/ Ix =7, +

[Q(6,) —Q(O,)] v ﬂu—-03+---+ [Q(6a) —Q (6. — 1)1
2. Pressure Caxc

s,
3

9u—9n}

. (6u) = 22 izﬁ {(Po—P(6.)] v Tx +

P(6,) —P(9,)] vV o.,—a,+...+ [P (0a-y) — P(64)] V au—am}
. Rate of Fluid Influx &

ok f(P—P(0)] | [P(6) —P(,)] -
Qo) = oy EE{ETEON | BUE

. - [B(8,) = P(8,) I+ -k [P(e,—n—r(a,n}
V O~y v a!_—an-z
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To obtain more fon on o

2 ax Goear distance

" § & sulreript: reptewris any posic
thve integer froun (e o2l ), 2,
Svseed .

t«wmbmv

| = mayy .

® == arhiizary pwsitive fnleger

p = dimensrios ]mmm
term R

p'-dl&:ud-nk- pressare corracs

q = dimenslonless R0id-influx term
v o rodial distames .

g, == interaal rodius of casing

7, *= equivalent radius ol exterier

s ellective producing
7adios

#p w rxtrraal radivs of tublng

ty = syquivalent radlus of imterivr
baundary: well vadins

& w arbitrary variable
1 @ dimensioaless time ratio

1y = eorresponds to toial period of
time under ennsideration

sy w meximum veluchy

warvarishile of integraiivn

xy "= distunce belwern cxterior sud
interior boundavies of a linewr
s30eD

X w= eaunting element nf. distance in
linesr rystem

a == ceniral angle of eircular sector
'. x» aversge formation volume fae-
ter

§ = mathematical soot
@ == time
@y == total peried of time gader con.
siderniion

iy m= tionr of seadjuciment :
s -uﬂwn.lﬁnl rool I
pos visewmity
L = mathematiral rout
p = sverage density :

» o svenage density of ofl at bot-
tom-lule ennditiane

& o= average efieciive parosity
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TABLE 5. Finite radial system with fixed constant pressure at exterior boundary—Rate case. . .

ro/rwml.5 to/cwael,0 rofrwm2.6 re/rwe=3.0 rofrwmd,b 19/rwmi 0 re/rwmb.0 refewms.0
Dimension. Dimenai Dimeasi Dizxensl Dimensl Dimsesica- - Dizves Digosi
time thange time chazgs time thange time change time change tima changs time ch:nze tize changy
t ] t 10 t »®) t 0] t 0] ¢ 0] t 20} t »lt}
.0{10)~3 0.230 .0(10)2 0.424 3.0{10)~2 0.503 .0010)2 0.617 .0(10) 0.620 X 802 4. 375 7. .45
o (“ 240 .3 ¢ 461 3. 533 B3 X .0 ¢ . 663 4 0.857 2 320 7. N
0 ¢ 0.248 4 “ 457 4,0 4 584 .0« 602 7.0 4. 0,705 K 905 8. .381 8. 554
i , 266 K- 473 .5 ¢ 681 .0 4 0.702 .0 “ 0,74t . 047 ' 8. -3.3e8 8. 520
.0 222 .8 435 .0 “ ,818 .0 ¢ .38 X . . 988 [ X . 71,433 . 604
.0 ¢ ,292 004 498 5 838 .0 ¢ 710 o 804 . 020 5, © 1483 2. 837
.0(10)4 0,307 5 Y 827 L0 ¢ . 859 N 799 - B .. 052 1. 480 10, 845
% 328 04 863 0 ¢ 695 . L850 X L0048 g .080 1. 518 X JH
4 344 58 813 .0 ¢ 728 - 892 X 0. 48 6 . 1.108 8. B39 14, .788
- Bl . 356 .0 “ 501 g 785 N 937 . 081 .130 8. .881 ! 837
1,84 .367 5 % 605 N 778 o .855 3 018 . .183 9. 580 18, 878
L0 % 0.378 .0 ® .619 . .815 . .50 8 1 . .100 10. 818 20. 914
.2 % .0.381 5 © 630 . .B42 2, .000 8 085 g 323 13. 087 2. 1,943
.4 “ 0,388 0 ,639 . 881 X 018 . .087 R 285 1. T304 2¢. 987
X Bt 300 KR &7 . ,B78 X .030 # .108 X 390 18.! 730 28. 988
.8 ¢ ,393 0 ¢ 854 . 887 o .042 o <123 209 18. .49 28, 002
.0 % 0,396 .6 % ,680 % 808 . 081 . .188 X 325 20. 162 30. 018
.5 “ 400 .0 # ,685 X .00 o +089 3 .183 X 347 . .771 5. 04l
.0 ¢ 403 - B L6590 X ,905 £, 080 X 315 381 X Rl 40, . 085
5 Y 404 . .673 . 808 . .087 ®. . X 370 3 .81 45! .08
W0 Y 0.405 » . 683 5 .010 R .03t 8 A2 10. 378 28. .784 80! 070
.0~ 405 R L6383 R L013 o 004 B .87 12, 553 30, .87 €0. 076
.0 4 . 405 . .630 H 915 3 096 ., 14, 388 5. 789 70.0 078
0 % 0.408 N. % . gig X %7 10, ﬁ% ;g %g g ;g; 20, .070
.8 603 . 018 A 088 1¢. .
+0 603 2 918 10. 000 18, 25
Te/rw=10,0 refrw=15,0 re/rw=20,0 To/rwae25.0 To/ew=30.0 re/rw=40.0 ro/rw=30.0 re/rw=00.0
Dimsosion. Dimension- Dimenel Dimensi; Dimsas; Dizgansi Dimeasion. Dimension-
lees  Pressure Jest  Pressure lss  Presurs les  Premors lews  Pressore s Pramurs las  Promurs loss  Pressure
Ums change tirme changs time chaoge time changs* tize  change tims changs  time  chasge time  changy
t o(t) t - C] t 20 t L0} t o) t 0] t 0] ¢ 20
10, ML 20, 080 ¢ 30, 148 5.0 389 700  2.851 12,0008 2.513 2. .04 3.0(10) 3.257
12, 70 A .008 35, 319 55.C0  2.434 8.0 -3.618 o 58 R el
1. 738 24 LG43 . 1282 0. 478 90. .62 180 “ 298 2.0 Y 315 50 ¢ 3512
16. a8 28] 080 45 338 &, 514 10.0{104 2,723 18.0 « 301 250 " 311 8.0 " 3
18, .007 28, 114 Bo. ,388 20. 550 12,0 ¢ 322 20.0 4 3.083 23,0 ¢ 329 7.0 % 3.618
20. 982 30. . 146 €0, 475 8. 583 4.0 ¢ 2.8%8 220 * 3,10 30.0 “ 3,283 8.0 “ 373
X 043 38, 218 70, 54T 80, .61¢ 18.0 “ 2,030 24.0“ 3153 - 30 IR 9.0 ¢ 3.792
30, 111 40. 279 80. 809 8.0 - L. 843 16.5 ¥ 2,985 28.0 « "3.181 40.0 * 3.405 100 ¢ 3.82
38, . 180 45, 332 20, L858 90, 871 17.0 * 2497 28.0 4 3,228 45.0 ¥ 3.481 12,0 “ 3.903
40, 107 .80, ri ] 10.9(10)t 2.707 $5. 697 17.5 ¥ 2,003 30.0 * 329 §0.0 * 3.512 14.0 * 3950
45, L, 324 80, 2. 455 106 “ 728 10.0(108 2.721 18,0 ¥ 3.008 38.0 ¥ 33231 85.0 4 3,858 - 16.0 ¥ 3.9%
50, o 70. 513 .8 747 .0 ¢ 807 .0 . 3.054 40.0 « 3.301 80,0 * 3.505 18.0 © 4.0
83, 280 80. L858 3.5 ¢ 784 4.0 “ 278 250 * 3,150 45.0 “ 3,440 65.0 ¥ 3.630 20.0 ¢ 4.043
80, 371 20, 592 “ 2 781 18.0 = 936 30.0 ¢ 3.319 50.0 “ 3.483 70,0 * 3.681 25.0 * 4.011
86.0 278 10.0(108 2.619 .5« . 798 18,0 ¢ 934 35.0 ¢ 3.280 83.0 « 3.518 75.0 © 3.688 30.0 ¥ 4,088
70. .86 12.0 « 855 .0 ¢ .810 20.0. % 3.024 40.0 # 3,306 6.0 “ 3.M5 0.0 * 3.7113 35.0 ¢ £.000
78. . 260 140" 13.8 * . 823 20 ¢ 057 450 “ 3,333 £5.0 ¢ 3,568 5.0 ¢ 3.735 40.0 * 4.002
80, .293 16,0 4 .630 4.0 835 24,0 ¢ .085 50.0  8.381 70.0 “ 3.538 90.0 4 3.754 45.0 “ 4.083
90, 297 18,0 # L6097 4.8« 848 26,0 ¢ 107 80,0 ¥ 3.375 80.0 4 3,619 $5.0 ¥ 3.711 &0.6 % 4.0
10,030 2,200 .0 701 “ 357 28,0 ¥ -3.128 70.0 # 3.387 90.0 “ 3.640 10,0(10* 3.787 55.0 “ 4.04
11.0 % L. 30L 23.0 % 704 16.0 “ 818 30.0 ¢ 142 80.0 “ 3.30¢ 10.0(10)? 3,655 120 “ .53
12,0 ¥ ,302 24,0 * 708 18.0 “ .R08 0 4 171 0.0 “ 3,307 12,0 “ 3,673 14.0 *. 3.883
13.0 “ ,302 26,0 . 707 .0 “ 929 40.0 ¢ . 189 10.0(102 3.3 14,04 368 - 160 “ 1311
4o L2303 28.0 * 707 4.0 4 968 45,0 * .200 12.0 “ 3.401 18.0 “ 3,835 18.0 ¥ 3.%3 .
16,0 “ 303 30.0 ¢ 208 - 250 978 50.0 ¢ 207 14.0 ¢ 3.401 18.0 4 3,887 20.0 “ 3.0
30.0 “ 980 80,0 “ 214 20.0 ¢ 3.628 2.0 % 3.904
" 40,0 % 892 70,0 ¥ 317 5.0 “ 3.6 4.0 ° 3,007 -
50.0 % 2.608 20.0 “ 3.218 .0 3.000
. 20.0 ¥ .21 .0 4 3.910
. To/rw=70,0 refrww 0.0 To/r=50.0 - rofewae100,0 ¢ tefrwwm200.0 w/rw=300.0 - ro/rwed00.0 /re=500.0
M B . i K3 D5 - - i - %, - T P’ D £3
“Jess  Dremure Jess  Pressure Jess  Pressore less  Pr . B . lem  Presce las - Presure [~ Prossure
Ums  change tme  chacge | tme  chings time  changs tios  changs fms chamgs. time  chaaps time changs
¢ [20) t 20 Pl 0} t 20} t o) s 20} + it
B.0(10)* 3,513 6,0(10)* 3.803 L0100 3,747 0107 3.859 .5{108 4.051 0.0(10P 4.764 1.8 212 2.0(108 85.388
8, l(“}’ . 603 7.0 4 3.8 K ¢ 3.808 S % 3.9 L0 ¢ 4,208 1. K“)' L.898 3. “"‘”‘ 358 25" 483
7.0 “ 3,680 8.0 ¥ 3,747 .0(10)* 3.858 A4 4,028 L5 ¢ 4317 10.0 “ 5,010 3.0~ 5888 3.0« 850
8.0 " 3.748 9.0 ¢ 3.808 .2 % 3,849 L% 4002 .0 % 4,403 12 101 4.0.* 5,620 35 838
0.0 4 3,803 10.0 “ 3.887 .3 “ -3.088 8 ¢ 4150 .5 ¢ 4,483 14,0 ¥ 5117 50 5781 4.0 ©- 302
10,0 4 3,854 12,0 ¥ 3.946 4“0 4,025 .0 ¥ 4.200 .0 “ 4,552 16.0 * 5.2 8.0 % 53845 4.5 4 . 780
12,0 ¥ 3.937 14.0 4 4.019 B4 £.083 L5 4 4.303 .0 ¥ 4,663 18.0 * 5,200 $.0 ¢ 5280 S0 810
1“0 " 4003 15.0 ¥ 4,081 8 % 4144 .0 ¢ 4379 J8.0 Y 478 20.0 * S.u8 2.0 * 5.920 8.0 % 804
18.0 “ 4,054 18.0 « 4,080 .0 ¢ 4,102 S ¢ 443 0 ¢ 4.829 240 " 5429 9.0 “ 5.942 7.0 " . 960
18.0 * £.006 18.0 ¢ 4,130 L8 ¢ £.288 ¢ 4.0 % 4478 0 ¢ &894 28.0 ¢ B.451 10.0 “ B.957 3.0 % .13
20,0 * 4,127 20.0 4 4,171 .0 4 4,249 .5 ¢ 4.810 X _;“ 4.849 “30.0 “ E.517 11.0 “ 5,987 9.0 088
25.0 ¢ 4,181 25.0 ¥ 4,248 L8 ¢ 4.36¢ - L0 # 4,834 10, 4.998 40.0 “ 5.608 12.0 * 5.878 10.0 « 083
ig, “ 4,311 30.0 ¥ 4297 4.0 * 4.428 5 4 4853 12,0 * 5,072 50,0 “- 5,652 135 4 8977 13,0 ¢ 135
.0 4 4,228 35.0 # 4,328 B34 4448 0 * 4,685 4.0 % 510 80,0 * 3.676 13.0 ¢ 5.980 1®Hov 164
40.0 ¥ 4£.237 40,0 4 4,347 0 4 4484 5 ¢ 4.879 18,0 ¢ 5,171 0.0 % 5.0 - 140 ¢ 5483 180 * .18
45,0 ¢ 4242 45,0 " 4380 .0 4 4,483 .0 ¢ 4883 18. : 5.203 80.0 * 3.&8 16.0 “ 5,988 18.0 & 4.105
250. “ 4,245, 0.0 ¥ 4,388 .0 ¢ 4,491 . TS5 Y 4588 20, §.227 80.0 “ 5,700 18.0 “ S.%0 200 ¢ 202
.0 4,247 80,0 “ 4,378 .0« 4,466 D ¢ +.4,503 25.0 ¥ 5.284 10.0{10 8,702 20.0 “ 5991 250 % 311
80,0 ¥ 4,247 70.0 ¥ 4,280 L0 ¥ £.498 .0 ¥ 4838 30.0 “ 5.232 120 % 7@ . 340 “ 5991 30.0 # 313
85.0 “ 4248 80,0 “ 4,381 - 10,0 * 4£.499 10.0 ¥ +.601 28,0 © £.230 14.0 * 5,704 2.0 4 591 5.0« 314
;2. “ 4.25 gg. m;)'um E " tggg g M ’;% 40.0 ¢ 5204 15.0 % 3.704 40,0 “ 314
3 . . 4. B . o 3
20,0 ¢ 4,248 11,07 4,382 4.0 % 4,500 -
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TABLE 5. Finite radial system with fixed constant pressure at Exterior Boundary — Rate case, — (Continued)

ro/rww800.0

re/rw=500.0 Tt/ =700.0 Te/swm900.0 /rw=1000.0 re/rw=1200.0 re/rwe1400.0 Te/rwe1600.0
Dimsesi Dimeask Dimensi: Diméas . Dimtasion- Dimenark Dimens i
tms change  tims chazgs  time change  time ¢hange  time chsaze ticms cBaoge tims ohange time changs
t () t 20 t P}, ¢ 30] t () t - 1 10] t [0} t 0]
4.00100 5.103 5.0010¢ S5.814 7.0(10)¢ 5.988 8.0(10¢ 8.048 .0(1o» 6.1 2.6{10] 507 2.0(109 °8.307 2.500¢ 6.819
4.5 .763 6.0 805 8.0 ¢ 040 | 9. (“ L,108 . 3¢ 253 3.0« T04 © 2. u“ 5.819, s.0 710
5.0 ¢ 814 7.0 & 982 9.0 “ .108  10.0 ¥ 181 4 320 4.0 “ .83 3.0~ 87095 - 3.5 7 I57
6.0 *. 904 8.0 ¢ .048 10.0 # 180 13.0 ¢ . 251 .8 ,308 8.0 % .918 3.8 ¢ 785 4.0 ¢ 8853
7.0°% 5873 8.0 « .16 12.0 “ 240 4.0 % 327 .8 ¥ 482 8.0 * 975 4.0 « L840 50" 58
. 8.0« 04 10,0 ¢ 158 14.0 ¥ 322 18,0 302 .0 503 7.0 * 013 8.0 * 030" 8.0 “ 040
9.0 « 004 120 ¢ .28 16,0 4 382 18,0 ¢ 447 .5 .808 8.0 % 7.038 - 8.0 « 028 7.0 ,114
10,0 # 439 Mo 2305 180 ¢ 432 200 ¢ 404 .0 & . 881 $.0 ¢ L0568 1.0 ¢ tl)g 8.0~ .187
12,0 « 210 16.0 ¢ 357 200 ¢ 474 28.0 ¢ 887 5 = 738 10.0 087 8.0 " z! 0.0 * ,310
4.0« 252  18.0 « 308 25.0 ¢ 551  30.0 ¢ 883 .0 “ .T8L 12,0 080 9.0 « 18 100 * .24
18.0 # 209 - 20.0 « 420 30,0 4 500 40.0 ¢ 739 5~ 813 14,0 ¢ .08% 10.0 “ W71 18,0 « 324
18.0 ¥ .32 25.0 ¢ 488 35.0 ¢ 830 450 ¢ . 751 .0 * .81 16.0 # .088 15.0 “ 7.22% 20.0 * 364
20.0 ¢ 343  80.0 ~ 5514 40.0 % 850 50.0 ¥ 788 5 % S84 18.0 ¥ .08¢ 20.0 ¥ &) 280 * 373
25.0 # 376  85.0 530 45.0 ¢ 883  B5.0 ¢ Rerd .0 = L8688 10.0 * 089 25.0 ¢ A 20.0 ¢ 378
30.0 4 .387  40.0 « 540 £0.0 « 671 80.0 ¢ 788 0« . 888 20.0 “ 080 30.0 * 244 25.0 ¢ .377
35.0 ¢ 302 45,0 “ 545 85.0-¢ .678 700 ¥ . 704 .0 * L8958 21,0 000 310 .24 40.0 * 378
40.0 ¢ 305 50.0 “ 548 800 ¢ .67 80,0 ¢ 708 .0 ¢ 001 22.0 ¢ 080 30" & 42.0 * 1.318
50.0 “ 397 60.0 “ 550 +.70.0 ¢ .882 90,0 ¢ 800 10.0 % 004 2.0 060 83.0 4 244 4.0 * 7.318 .
60,0 “ 897 700 ¢ 551 B80.0 ¥ 834 " 10.0(10} 6.301 12.0% 907 2€4.0 ¢ 090
8.0 & 551 100.0 « 634 4.0 « 607 : .
X 1806 ¢ 6.008
re/rw=1800.0 zo/rw=2000.0 r8/ewm2200,0 ro/rw=2400.0 e /rwe2500.0 ro/rwm2800.0 2/cwe3000.0
Dimoasico- Dimension- Dimension- Dimension~ ) Dimsasion~ Dimsacsion- . Dimenaioo-
time change time tima change time time change time chay, time Mr
30008 ok dor i 8.ot0w S donor 708 Toums Pk gouoy Fgg foe iz
4.0 B854 8.0« . 980 55 % 7.013 - 7.0 ¢ 184 8.0% 201 9.0 “ .380 T L3t 403
5.0 ¢ 985 6.0 # 058 80" 057 8.0 ¢ .200 2.0 * 259 10.0 * 312 B Tl 4E0
8.0 ¢ OH 70 % 7182 85« 097 9.9 « 239 10.0 312 -12.0 ¢ 403 . 548
7.0¢ 7120 8.0 ¢ .198 7.0 % 123 1.0«  7.310 12.0-%  7.400 10.0 “ 242 ° 802
8.0 ¢ 7.188 9.0 “- 251 7.8 % 187 12.0* 398 4.0+ 475 .0 4 644 “ 551
9.0 “ 238 10.¢ # 288 204 7.189 © 180 ¢ 528 18.0 ¢ 538 4.0 719 ». 1.733
10.0 “ 280 130" K1 35" 428 200 * 811 18.0 ¢ 588 28.0 » T8 “ T
10" 2407 140~ 3L 9.0 ¥ 258 24.0 888 .0« .831 30.0 ¢ 191 . .820
20.0 ¥ 459 160 A4 10.0 ¢ .307 8.0 “ .703 240 & 889 35.0 ¢ 840 * 871
20. : - 748 18, : 808 1.0 ¢ 390 30.0 * .720 230 # 145 40,0 « 7.870 .0 " 803
40. - 7.405 20.4 530 16.0 ¢ 507 83.0 ¢ 745 20.0 ~ 165 59.0 ¢ 905 .5 * 085
£0.0 * 493 25,9 “« 588 20.0 * 578 40.0 ¥ 7.780 38.0 « 709 80.0 * 922 .0 ¢ .055
. 810 % 495 30.0 # 584 25.0 ¢ 831 80.0 « oy ] 40.0 821 70.0 ¢ 930 .0 “ 079
£2.0 © 7. 495 35.0 “ 593 30.0 « .881 80.0 « 780 80.0 * 845 80.0 “ 034 .0 “ 992
53.0 « 7.493 40.0 ¢ 7.597 35.0 ¢ 677 7.0 . 782 80.0 ¢ 7.858 €0.0 ¥ 030 .0 “ 990
&4 ‘: 7.458 50.0 ¢ 600 40.0 « 888 80.0 “ 7.783 70.0 ¢ 560 10.0(108 937 .0 002
8.0 ¢ 7.405 60.0 “ 601 50.0 “ 603 €0.0 ¢ . 783 8.0 ¥ 562 " 037 10.0 “ , 004
6.0 ¥ 801 80.0 895 95.0 « 7.783 20.0 ¢ 583 13.0 % 937 120 * . 006
70.0 ¢ 838 10.0(100 7.88 15.0 * 006
. 8.0 “ - V.'Bﬂ
Note: The

in Tsble 2 were
port-’»']gbc

numberical values in Thbles 3, 4, and & and part of those
talom directly from the Hurst and van Everdingen re-
values in Table 1 and thoes in Tabls 2 Including the rangs

-for the firat time.

t == 1 to £:=125,000 were sopplied to ths author by A, F. van Everdiogén
the courtesy of tha Shell Oil G , and in publicati

Assumptions Underlying Hurst-Van 'Everdlngen. Equations
1. The effects of gravity on the fluid flow are neglected totally,

2. AR flow through reservoir systems is assimed macroscopically laminar and

thus governed by Darcy’s law.

3. The sum expressed by Equation (24) is really the approximation

Po—P(L, by) = :kb

n
&
~m{Q (8,) :P(tx) +i§ 1

{Q(ao) p(t)

.raud
+J T

[Q(6)) —Q(85,) 1 Pty —1ty) }

hence, increments of § should be chosen 2s small as practicdble.
4. Likewise, the sum expressed by Equation (31) is the approximation

.3 Fulfy) =27 ¢onyh

n
=2zdete’h S [P(6) —P(61)] alte—t)

1=0

Hence, the increments of § should here
be alss chosen as small as practicable.
S. Assumptions “3” and “4” apply

to the corresponding expressions for,

Linear systems.

6. For radie] systems the relations
p(t) =2V t/rand pq(t) =2 v/ t/m,
for t < 0.01, are only close approxima-
tions of the rigorous equations,

‘dZu'.l e d’tlniﬂ.results zre based on
i radial an ear symmetry.

8. Values for the prmtg-,chmge

and fluid-influx terms are available only

B-56

fu PAP

—5——0-4(3&1—‘) 46

for specified boundary conditions.

9. The relation expressed by Equa-
tion (49) for obtaining the “annulus
volume adjustment term,” C, is an ap-
proximation based primarily on’ the as-
sumption that the casing-head pressure
is equivalent to & head of oil identical in

height to the gas column in the annulus, -

throughout the bottom hole pressure
decline. A value of C 50 obtained should
suffice for mosi engineering purposes;
however, if 2 more exact valus is desired,
then the actual casing-head pressure

[Q(8)1 pltac—2) d6} -

history of a well and the PVT relations
of the fluids in the annulus must be
used to evaluate the volume of fluid un-
loaded from the annulus per unit bot-
tom-hole pressure drop, and, in general,
the values of G determined with the aid
of this ratio will vary with the bottom-.
hole pressure. -
10. Only equivalent single-phase
flnids that satisfy the thermodynamic re-
lation - .
p=ps[14-c:(P—P))]

can exist between the bounding surfaces
of & system. . '
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change with the symbol, p(z) is pp(tp) in present day nomenclature, for it is also
dimensionless.

We would like to look at the behavior of the solution in some detail, including a
comparison with the line source solution often used in well testing. A detailed look at
this behavior is shown in Fig. 1 from Muieller and Witherspoon (1965). In this figure,
dimensionless pressure is graphed against the dimensionless time/radius ratio, fp/ r%.
This time function looks at pressure history at the inner boundary (rp =1) as well as
pressure histories at other radial locations. The rp =1 curve is the same as Chatas’ Table
L. )

This set of curves contains much useful information. Note that at the inner
boundary, at early times, Chatas’ solution and the line source solution differ quite a bit,
but they approach each other rapidly, so that ata zp / rg =20 they are nearly identical.
Also notice, that as we move out further into the aquifer (rp >1.0), the solutions more
closely approach the simple line source solution, so that at rp =20 they are nearly
identical.

In well testing this condition is often reached rapidly in time, so analysis of the line
source behavior is often useful. This is generally not true in aquifer flow problems, for the
inner boundary condition is an oil reservoir, not a well. The r,% term in the dimensionless
time function forces real times to be very great before the curves coincide.

A careful look at Chatas’ solution at rp =1 , shows that the pp versus tp
graph has a slope approaching 1/2 at very small zp. This result is what we should

expect. The reason is that, at very early time, the pressure has only changed significantly
at points very close to the internal radial boundary. Thus, for practical purposes, we can
treat this early time data as though the flow were linear near the periphery of the circle.
As we’ll discuss later, the equation for early time for all linear problerns is,

Pp =7 (12)
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From this equation, at ¢ =0.1, pp should equal 0.3568. It actually is 0.3144; that is, it
is about 12 % lower than predicted by Eq. 12. At tp =0.01, the earliest time in Fig. 1,
Eq. 12 predicts pp =0.1128 compared to 0.1081 in Chatas’ Table 1. The error is about
4 %.

Now let us turn our attention to the longer time values of pp . It is well known,
in well testing lore, that at long time in an infinite-acting system, the following simple

semi-logarithmic equation is valid.

PD =%(1ntD +0.80907) 13)

Since the mathematical equations for aquifer flow are identical in form, Eq.13 should also
hold true for the data in Chatas' Table 1. We will test this assumption for various values
of tp, as seen in the table below. From the results in this table it is clear that, for
practical purposes, the two equations are the same after a dimensionless time ranging from
about 20 to 50, depending on how accurate you expect your pressure difference data to
be. It is also clear, from Fig. 1, that from this time onward, the line source solution and

the finite radius solution are also nearly identical.

Comparisons of Actual p, with Eq. 13

t, i pp (Chatas’ Table 1) § pp Eq.13 | % Error
10 1.6509 1.5558 5.8
15 1.8294 1.7586 3.9
20 | 1.9601 1.9024 2.9
30 2.1470 2.1051 2.0
50 2.3884 2.3605 -1.2
70 2.5501 2.5288 -0.8

100 2.7233 2.7071 -0.6
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Since the early time data approaches Eq. 12, and the late time data approaches Eq.
13, it seems likely that we can use this information to develop simple closed form
approximate equations which will fit the data over the entire time range. I have tested this
idea, and it works. The short time data were fit to the following equation,

pp =1.1237 ()2 —0.4326 15, +0.106 (tp)>'? (14)

A comparison of early time results from this equation with the tabulated results in Chatas’

Table 1 is shown in the table below for zp ’s ranging from 0.0005 to 2.00.

Early Time Comparisons of Eq. 14 and Chatas' Table 1

tp pp (Chatas) pp Eq. 14 % Error
0.0250 0.02491 20.36
0.0005

0.001 0.0352 0.03508 034
0.002 00495 |  0.04935 -0.30
0.004 0.0694 0.06932 0.12
0.007 0.0911 0.09108 0.02
0.010 0.1081 0.10815 0.05
0.02 0.1503 0.15054 0.16
0.04 0.2077 0.20829 0.28
0.07 0.2680 0.26901 0.38
0.10 0.3144 0.31589 0.47
0.20 0.4241 0.42548 0.33
0.40 0.5645 0.56452 0.00
0.70 0.7024 0.69946 0.42
1.00 0.8019 0.79710 -0.60
2.00 1.0195 1.02375 0.42
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Note that all the values are quite close to Chatas’ table over this time range. The
greatest difference is 0.60%, which is far more accurate than we would expect real
pressure data to be. Note, also, that the first constant in the equation is 1.1237 rather than
2+ which is 1.1284. This slight difference comes from the least squares fitting routine I
used, and is not enough difference to be worrisome. Notice also, that the errors change
rapidly from -0.60 % at zp= 1.00, to + 0.42 % at tp= 2.00. So the user should not
extend this equation beyond this limit. This will not be a problem, for the long time
match, that I'll show next, extends over this tix‘ne range.

For the long time match, I used Eq. 13 as a starting point and added an empirical
time function which declines as time increases. The equation I ended up with was as

follows,

(15)

PD =—;~[1ntp +0.80907 + 1.024 ]

(tp +0.40)%7%

Equation 15 was found to fit Chatas’ pp(¢tp) data quite well for times, 0.70<tp. The
table on page 19 shows the results in detail.

Notice that these two tables overlap in the time range 0.70<tp <2.00. Also
notice that the long time data fit Chatas’ Table 1 with good accuracy, with a maximum
error of 0.40%. The amount of error decreases at longer times, as we would expect,
except at tp = lQOO where the error is 0.09%. From a careful look at Chatas’ results it is
clear that this value is slightly in error in his table.

Since the infinite aquifer solution becomes a semi-log straight line after a period of
time, it can be graphed simply. Also this same graph can be used to compare this behavior
with that of other outer boundary conditions. Such a graph is shown in Fig. 2,
page 18, from Aziz and Flock (1963). This graph is really remarkable, for it shows that
the lines for a constant pressure outer boundary look much like each other (becoming
horizontal), and the lines for the no flow outer boundary also look similar m the way they

rise. Well discuss these solutions next.
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Late Time Comparisons of Eq. 15 and Chatas’ Table 1

tp pp (Chatas) | pp Eq.15 { % Error
0.70 0.7024 0.7038 0.20
1.00 0.8019 0.8051 0.40
2.0 1.0195 1.0216 0.21
4.0 1.2750 1.2716 -0.27
7.0 1.4997 1.4963 -0.23
10.0 1.6509 1.6487 -0.13
20.0 1.9601 1.9592 -0.05
40 22824 2.2835 0.05.
70 2.5501 2.5518 0.07
100 2.7233 2.7249 0.06
200 . 3.0636 3.0644 0.03
400 3.4057 3.4068 0.03
700 3.6842 3.6844 0.01
1000 3.8584 3.8617 0.09

Constant Pressure Outer Boundary

Consider the cases where the pressure is fixed at the outer boundary, the ones that
become horizontal and constant in Fig.‘ 2, after a period of time. With a little thought, we
should realize that these systems approach the steady state condition after a period of
time, for the flow rate is constant, and the outer boundary pressure is fixed. Further, this
constant value is based on Darcy’s Law, and the equation is quite simple, based on the

definitions of the variables.

We can test this conclusion for a couple of cases in Chatas’ Table 5, which defines

the pressure behavior of this finite system. ‘Note that at late time for rp =10.0 the
pressure value is 2.303, the natural logarithm of 10, and at rp =100, it is 4.605, as we

predict.

pp =In(rp)
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We can think further about these results to generalize their behavior, for we know
how they work at both early and late times from Eqgs. 13 and 16. Using these equations

as a guide, we would expect that an equation of the form,

pp ~1n () =%[1n (10173 )+0.80907] 17)

will have the same shape as Eq. 13, and all results would fall exactly on top of each other
at early time, for Eq. 13 has really not been changed. At late time, however, the pressures
are independent of time, so the left-hand side of Eq. 17 should be identically equal to zero
for all radii. Wel check this idea out for certain cases in Chatas’ Table 5, as listed in the
tables below. '

Equation 17 Values for r, =2.0, 10, 100 and 1,000

=20 rp =10
Pp Pp —hl(ro) tp p /rzg Pp pp—1n(r,) Ip Ip /rg
0.424 -0.269 0200  0.0500 1.651 -0.652 10.0 0.1000
0.498 -0.195 0300  0.0750 1.952 -0.351 20.0 0.2000
0.591 -0.102 0.500  0.4000 2.197 -0.106 40.0 0.4000
0.647 -0.046 0.750  0.1875 2271 -0.032 60.0 0.6000
0.673 -0.020 1.000  0.2500 2.300 -0.003 100.0 1.0000
0.688 -0.005 1400 03500 2.303 -0.000 160.0 1.6000
0.693 -0.000 3.000 _ 0.7500
rp =100 rp =1,000
Pp pp—In(r,) tp tp/ rg Pp pp—In(r,) p tn/ rg
3.859 -0.746 1000 0.1000 6.161 -0.747 1x10°  0.1000
4.150 -0.455 1800  0.1800 6.605 20303 25x10°  0.2500
4434 -0.171 3500  0.3500 6.813 0.095  45x10° 04500
4552 -0.053 5500  0.5500 6.885 0023  70x10°  0.7000
4.598 ©0.007 9000  0.9000 6.904 0.004  100x10°  1.0000
4.605 -0.000 15000 1.5000 6.909 -0.000  160x10°  1.6000
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The results of these calculations are graphed on Fig. 3, page 22, using pp —In(rp)

on the arithmetic coordinate and zp,/ rlz) on the logarithmic coordinate, as suggested by
Eq. 17. Itis clear from this figure, that all the tabulated values do not fit with each other;
but it is important to see that they do fit for rp =100 and 1000. The reason, of course, is

that the form of Eq. 17 came from Eq. 13, which we know from Fig. 1 isn't correct until
after a period of time. This, in turn, means that the system must be large enough that the
outer boundary is not felt before Eq. 13 becomes valid.

Notice, also, that the rp =10 data fit féjrly closely to the data at larger radii. This

is because at rp =10 the assumptions inherent in Eq. 17 are not unreasonable. Again,
we could have predicted this from looking at the results in Fig. 1 at rp =10.0.

An additional point should be made about these results. It is obvious from Fig. 3
that all the columns of Chatas’ Table 5 were not necessary. The results at rp =100 can
be transposed to any other higher value of rp using Eq. 17. This is a useful concept that
can be of great help in understanding how aquifer influx behaves (or any transient flow) at
large rp.

To translate from one value of 7, to another, we use Eq. 17 to conclude that at

another radius, we should look at pressure results at differing times, as follows,
tpy =tp1(rp2 11\ =tp1(ra /1) (18)
Also, from Eq. 17, the pressure behavior for the second case (at rp =rpy) is related at
these times to that of the first case (rp =rp;) by,
pp2 =pp1+In (ip2/7p1) (19)
To test this idea out, I've listed values of pp at various values of ¢p from

Chatas’ Table 5 at rp =100 and 1000, as shown in the table on page 23. Some

. comments about this table seem in order. The values of zp; and pp; in the table come

directly from Chatas’ Table 5 at r =100. Equation 18 tells us that, if rpy =1000, we
should evaluate pp at dimensionless times 100 times as great. These are the times used

in the third column, while the fourth column shows the pressure differences listed in
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Chatas’ Table 5 at rp =1000. The fifth column comes from Eq. 19, which states that

these pressure terms should be the same as in the second column with a simple adjustment

by In (7 /r1). Note from comparing the last two pressure columns that this statement is
exactly true, so it is clear that Eqgs. 18 and 19 can be used to generate any set of pressure

calculations one wishes to use for any large value of rp,.

Comparisons of pp Values at rp =100 and 1,000

rDl = ].OO py = 1000 In »n / 7‘1 = 2303
tp1 Po1 i tp,=tp(n/n)? Pp2 | Pp1+2.303
1.OX103 3.589 1.0><105 6.161 6.162
2.0 4.200 20 - 6.503 6.503
4.0 4.478 4.0 6.781 6.781
6.0 4.565 6.0 6.868 6.868
10.0 4.601 10.0 6.904 6.904

As discussed later in this report, certain outer boundary conditions cause
exponential decline when the data are graphed properly. This idea is discussed in
some detail for the radial system with a closed outer boundary and a constant pressure
inner boundary in the next section of these notes. But it is also true that finite aquifers,
with constant pressure at the outer boundary, and produced at a constant rate, will exhibit
exponential decline when graphed properly.

To show this concept, I've looked at one case in detail, at rp =10.0 . The
exponential decline equation tells us that, if we were to graph the log of the pressure
difference against time on arithmetic coordinates, we sﬁould get a straight line. For this

purpose, the pressure term graphed should be pp(e)—pp(tp) ; and for rp =10,
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The values of pp(ee)—pp{tp)[2.303— pp(tp )] are graphed on semi-log paper

against time in Fig. 4 on the next page. Clearly a perfect straight line is found. - The slight
scatter of a few points off that straight line are an indication of the slight errors in Chatas’
table. Note that the first point on this graph is at #p =10, and the value of

pp(tp)[1.651] is the same as in Chatas’ Table 1 for the infinite system. Thus, this, and

Exponential Decline Parameters for Radial System at Constant Rate

With a Constant Pressure Outer Boundary, rp =10, pp(e)=Inrp =2.303

tp | ppltp) | 2303~ pplip)
10 1.651 0.652
12 1.730 0.583
14 1.798 0.505
16 1.856 0.447
18 1.907 0.396
20 1.952 §. 0.351
25 2.043 0.260
30 2.111 0.192
35 2.160 0.143
40 2.197 0.106
45 2.224 0.079
50 2.245 0.058
55 2.260 0.043
60 2.271 0.032
65 2.279 0.024
70 2.285 0.018
75 2.290 0.013
80 2.293 0.010
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all other finite radial systems, can be treated as though it were an infinite system for some
time, and then the exponential decline equation can be used thereafter.

Clearly, systems at other radii will behave in this same way. Thus it would be
possible to derive closed form solutions for the times to switch from infinite acting to
exponential behavior, and to define the slopes and interrupts of these exponential decline
equations, just as will be done later for the constant pressure cases. I've not done that
here, for the constant pressure case is the one most commonly used in water influx
calculations. However, if the reader needs to use this idea for constant rate calculations, it
would not be difficult to accomplish.

These exercises also make it clear why the curves which become horizontal in Fig.
2 look so much like each other. We will find that other boundary conditions can also be
put into useful generalized equation forms which provide insight on the nature of the

resulting solutions and graphs.

Closed Outer Boundary

The lines that rise above the semi-log straight line in Fig. 2 are for the closed outer
boundary. They curve on this graph, but if they are plotted on arithmetic paper, we find
that they are straight lines. The reason for this is simple. At late times, with a closed
outer boundary, the entire system approaches pseudo-steady state flow. Wel address this
concept next.

In earlier notes (Brigham, 1988), I wrote about pseudo-steady state flow, and
pointed out that, if we are producing at a constant rate, after a period of time the entire
system is depleting at an equal rate. The resulting equations look a good deal like the
steady state equations, and this is the reason it is called "pseudo-steady state."

One of the equations in these earlier notes related the difference between the
average pressure and the inner boundary pressure to the reservoir parameters, as

follows,

—z”k"(ﬁ—pw);:m(relrw_[ ; ][3r3~i} “

qw K4 (,.82 _ r£)2 re2 - r,% 4 4
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To compare this equation to the aquifer flow equation used by Chatas, we need p; — py,
rather 7 — p,, - To accomplish this we need to derive an equation for p; —p . But this

can be done easily with a simple material balance, as follows,

=_ ut .
pi—D= (21a)
ﬂct¢h(rez —r,%)

which, when we insert the definition for zp , simplifies to,

27kh(p; —P) _ 2zD2 1)
qu (r, /7,)" —1

Now we can combine Eqs. 20 and 21b to get a general equation relating Chatas’

pressure drop with pseudo-steady state conditions,

2xkh(p;—py) (rir,) i, /n,) 30/ ) -1 25,
= 7 3 3 T 3 (22)
' qu /7, )° -1 A, /1, ) =1 (/1) -1

What we would like to do is to compare Chatas’ pressures in Table 4, for the
closed outer boundary, with the results one would calculate using various assumptions
about the flow equations. At early times, one would expect that the outer boundary
would not affect the pressure behavior, while at later times we would expect that the
pseudo-steady state assumption would b; valid. To test this idea, I've listed pressure data
from Chatas’ Table 1, (pp). , and from his Table 4, (pp )c , and from calculations

using Eq. 22, (pp) pss» atvaluesof 7p =2, 5 and 10 in the first table on page 29.

There are also data available for closed systems with larger radii, as shown on the
attached table (page 28) by Katz ez al. (1968). In that table, the terms labeled, R, we
have called rp . The headings, r=1 areat r, ,and theterm, 8, wecall pp . Ilst

the rp =100 (R =100) data in the same way in a table at the bottom of page 29. To do
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this at longer times, it was also necessary to calculate (pp).. using Eq. 13, for these data

are not listed in Chatas’ Table 1.

Table of Dimensionless Pressure Drop Distribution, Pp (rp.tp) , Finite
Radial Aquifer with Closed Exterior Boundary, Constant Terminal Rate.

From Katz, et al. (1968).
—_—n R=§.0 Ra=100
Q r=] r= 2 red re 8 Q r=} =2 z =4 r= 7 r= 10
1,0 « 8021 - 2204 . 0008 . 0000 ] . 8021 « 2204 « 0073 . 0000 « 0000
2.5} 1.100 «4632 . 0229 . 0007 2.5 ] 1,100 4632 «0703 .0015 . 0000
s 1,362 . 7011 . 0967 0168 | 5 1,362 7010 « 1942 ~0195 . 0021
10 1,654 «9783 . 2590 +ik1n 7 0 1.651 9752 < 3394 . 0928 + 0343
2% 2. 180 1.500 . 7371 .5698 25 2, 085 1,401 <7663 °  ,378) - 27197
50 2.975 2. 295 1.531 1,363 50 2,604 1,919 1,280 .0813 7787
100 4,653 3,882 3118 2.950 100 3, 614 2.929 2. 290 1.891 1.9
250 6, 645 5,960 5. 321 4. 922 4,819
500 11,695 13,030 30.371 . 9.972 9.86%
R=x12.0 R=14.0
) rx 1 rx 3 =z b =312 [ rel rx 3 r= 7 r= 14
5 1,362 +3737 ,.0448 «« 0002 s 1. 362 « 3736 . 0155 - 0000
10 1,651 .6133  .1501 . 0087 10 1.651 .6133 0897 0019
25 2.066 .9948 .4182 . 1356 25 2,062 .9906 . 3048 . 0633
50 2.462 1,384 - 7826 .4648 50 2.411 1,329 . 5889 . 2805
100 3. 165 2.087 1.483 1,163 100 2.939 1.955 1,106 . 7868
250 5,263 4.184 3,581 3,261 250 4,478 3. 394 2. 0645 2. 325
500 8. 760 7. 631 7,017 6, 757 .500 7.042 5.958 %, 209 4,889
1000 15,752 14.674 14,070 13,750 . 3000 12.170  21.337 10,337 10,017
R =16 . R=18.0
[ rzl rx 4 rx 8 r=z 16 [ r=x ] r =4 r=9 r=z )8
5 1,362 - 1942 + 0079 0000 5 1,362 « 1942 - 0029 . 0000
10 1.651 « 3591 .0521 0004 10 1,652 « 3891 . 0292 « 0001
25 2,062 » 7310 .2235 .0281 25 2,062 . 7310 1633 .0l18
50 2,394 1,039 .4585 L1681 50 2.390 1,033 . 3638 . 0992
100 2. 825 1,463 . 8620 « 5442 100 2,768 1,402 «693% « 3798
250 4.003 2,641 2.039 1,720 250 3.705 2,337 1,62% 1.308
500 5.964 4,602 4,000 3,681 500 5.253 J.885 3,173 2.853
1000 0.886 8,523 7.921 2,602 . 1000 5 M9 6,90 6. 289 5.949
R = 20 R = S0
-] rs ] red =10 r = 20 [ rx ]l ru b T =20 r = 50
10 1.651 . 3890 . 0158 « 0000 25 2.062 .4063 .o 0022 . Q000
25 2,062 « 7309 1182 . 0047 50 2. 388 . 6691 . 0260 .0000
50 2.389 1,031 +2911 .0572 100 2,723 . 9687 21124 .0003
100 2,742 1,373 .5710 + 2654 500 3.522 1,738 . 6263 1692
250 3.513 2.142 1.328 3,009 1000 3.963 2.1 1.047 5526
500 4,766 3,398 2,581 2,263 2500 5.166 3. 380 2. 249 1.152
1000 7.272 5,901 5,088 4, 769 5000 7.1867 5,381 4, 249 3.753
2500 | 34.731 13,420 12,607 12,288 -
R = 100 .
2] r=l r=3 r=b rs 10 r = 20 r = 50 r = 100
100 2,723 1,632 « 9689 »5294 « 132 +0002 « 0000
250 ] 3,172 2,077 1,39 . 9157 . 3539 o128 +0000
500 | 3.516 2.419 1.732 1,237 .6133 .0738 .0012
1000 | 3.86F 2.763 2,073 1.570 <9128 .2173 . 0273
2500 | 4,335 3,237 2,545 2,028 1.362 .5628 « 2590
5000 | 4.856 3,757 3,06S 2,558 1.880 1:069 « 507
10000 | 5.856 4.758 4,066 3.558 2.080 2.069 1,753
25000 | 8.857 7.758 7,066 6.559 5.880 5.069 4, 751




Comparisons of Calculated pp’s at VariousValues of rp and #p for Closed Systems

rD =2 TD =5

ip  (p) (0) (@plps| o (p)e  (Pp)  (PD)pss

0.20 0.4241 0.427 0.4489 3.0 1.1665 1.167 1.2255
0.30 0.5024 0.507 0.5156 4.0 1.2750 1.281 1.3088
0.40 0.5645 0.579 0.5823 5.0 1.3625 1.378 1.3922
0.50 0.6167 0.648  0.6489 6.0 1.4362 1.469 1.4755

7.0 1.4997 1.556 1.5588
10.0 1.6509 1.808 1.8088

tp  (pp)e (D) (PD)pss

15 1.8294 1.832 1.8973
20 1.9601 1.968 1.9983
30 2.1470 2.194 2.2003
40 2.2824 2.401 2.4024
50 2.3884 2.604 2.6044

Comparisons of pp, ’sat rp =100,
Closed Outer Boundary (Katz ez al., 1968)

Ip (D). (rp )c (rp) pss

100 2.7233  2.723 3.8760
250 3.1726  3.173 3.9060
500 3.5164  3.516 3.9560
1,000 3.8584  3.861 4.0560
2,500 4.3166  4.335 4.3561
5,000 4.6631  4.856 4.8561
10,000 5.0097 . 5.856 5.8562
25,000 5.4679  8.857 8.8569
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If we look at the results from all four of these tables in detail, certain trends and
comparisons become obvious. First it is clear that the infinite system tables show the
smallest pressure drops, as we should expect. But of great importance, is that, at early
times, the actual pressure behavior of the finite systems closely follows that of the infinite
system.

The pseudo-steady state equations predict the greatest pressure drops. Again this
is as we would expect. But again, we reach the important conclusion that the later time
behavior of all the real systems closely follow the pseudo-steady state equations, as we
had anticipated.

A most important conclusion can be reached by evaluating the tabulated data in
detail. We see that one or the other of these simpler equations will predict the values in
the tables with an error of only about 1% over the entire range of data! Real pressure
drop data are never this accurate. So, in brief, the tables for finite systems are not needed
at alll We can use the infinite system equations at early times and then switch to the
pseudo-steady state equation to calculate later pressure drop history.

To carry the idea out in detail, I have performed these same calculations for a host

of rp’s ranging from 1.5 to 100, and have listed the values for the #p’s at the crossover

times. These results are listed in the table on page 32.

Other columns are also listed in this table, and the reasons for them will be
discussed. The square root of ¢#p is listed because I wished to graph these data on log-
log paper, and this was a convenient way to reduce the range of data to fit on 3x3 cycle
log-log paper. These data are graphed as circles in Fig. 5, page 31. Notice that the data
curve at smaller values of zp and rp, but they are nearly a straight line at large values of

these parameters.
It seemed likely that it would be possible to straighten this line by making

adjustments for rp, in either the #p term or in the rp coordinator itself. Several ideas
were tried, and the most successful one was to simply graph rp —1 rather than rp. The

resulting data are shown as diamonds on Fig. 5. They clearly fall on a straight line,
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whose slope is almost equal to 1.00. This straight line was fit to an equation, as

follows,

tp =0.328 (rp — I (23)

Note that the exponent on rp —1 is 1.945 rather than 2.000, which it would have been if
the slope had been 1.00 in Fig. 5. Equation 23 was used to calculate #p’s and these are

listed in the last column of the table below. These values can be compared with the data in

the second column. Clearly, the fit is excellent. A fit of £10% on tp would have been

quite satisfactory, and this fit is considerably better than that.

Times for Switching From Infinite Acting

Behavior to Pseudosteady State Behavior

Crossover Calculated
D tp | o |m-11
1.5 0.08 0.283 0.5 0.0852
2.0 0.35 0.592 1.0 0.328
3.0 1.3 1.14 2.0 1.26
5.0 4.5 2.12 4.0 4.86
7.0 11 3.32 6.0 10.7
10 25 5.00 9 235
14 50 7.07 13 48.1
20 100 10.0 19 101
50 675 26 49 636
100 2500 50 99 2497

In summary, to make calculations for a closed system at constant rate; at early

times the equation for an infinite system can be used, and at late times, Eq. 22 can be used.

Equation 23 defines the time, #p , to switch from early to late time calculations.
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One last useful idea for this system is the concept of a drainage radius, 77. If we
were to flow at a constant rate in an infinite system, we find that the pressure/distance
curve looks much like Fig. 6. A graph of the Katz, et al. data, for rp =100 , at
tp =100 and also at #p =250, would show this sort of behavior. The value of pp
varies linearly with the logarithm of rp for some distance, and then curves gradually
toward pp =0 at larger values of rp. At later times, fpj , the straight line extends
further into the system, but the gradual curve toward pp =0 at larger rp, is similar.

The important point is that the slopes of the straight h'he portions of these curves,
at small rp’s , are the same; and these slopes can be extended as straight lines toward
pp =0, as indicated by the dashed lines in Fig. 6. These straight line intercepts have
commonly been called the drainage ratios, 7y. This is somewhat unfortunate

nomenclature, for it gives the erronious impression that the aquifer is only being drained
out to that distance; while we know that drainage actually extends out to infinity, or to the
outer boundary of the aquifer.

If the aquifer radius is quite large, we can use this idea of drainage radius in a
useful way to calculate pressure histories. The slopes of the straight lines in Fig. 6 are

proportional to g,,, and one can write an equation for them using Darcy’s Law.

qw = Zﬂ:kh(pi —Pw) (248.)
p (/1)
or,
pp =In(ry /1) (24b)

and, invoking Eq. 13, the log approximation, which is valid for the infinite system after a

period of time, we can set the two equations equal, as follows,

In(ry /7,)= pp =1/2(Intp +0.80907) (252)
which simplifies to,

(ry /7,,) = (2.2458 2 }1/2 (25b)
d!Tw
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In a finite aquifer, at late times, we already know that the system reaches pseudo-steady
state, as defined by Eq. 20. If the aquifer is large, the ratio, (r, /1y )2, is far greater than
1.0, and Eq. 20 then simplifies to,

27 kh(p~ py) = (04727, /7,) (262)
q wh
=In (1 /1)
or
r; =04727, (26b)

So Eq. 25 defines 7; for a large infinite acting system, while Eq. 26b defines 75 for a

large finite system. We would like to combine these equations and relate them to the data

in the Katz et al. table. In that table, the pressure drop was expressed in terms of p; — py,

rather than P — p,, as it is in Eq. 26. To change the pressure difference used, we can

invoke Eq. 21b, as we did before,

27nkh - 2t
222 (b~ p)=—2— 21b)

which for large values of (r, /7, )2 , simplifies to,

2zkh
qu

Adding Eqs. 21c and 24b, and rearranging, we get,

(p; = B)=2tp(ry /7. ) (21c)

In(rg /%) = pp(Ltp)—2tp (ry 1 7. ) @7)

Now we are in a position to look at the behavior of these closed systems, using the
radius of drainage concept, to see if they can be related to each other in a general way.
Clearly, at early times, Eq. 25b will be valid. In the table, at the top of page 37, I evaluate

this equation at various times, in terms of 7y /7, rather than 7; /7, . These data are

graphed as diamonds on Fig. 7, on page 36.
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Infinite Acting Radius of Drainage, r; .

D ("w/re)2 '\/2~2458tD ("w/re)2 =1gl7,
0.001 0.0474
0.002 0.0670
0.005 0.106
0.010 * 0.150
0.020 0.212

For comparison, well also look at the results in Katz’s table at (1, /7,)=50 and

100, calculate their drainage radii as functions of time, and graph the results using
(ry/7,) . The results from Katz’s table (from Eq. 27) are shown in the table below.

Radii of Drainage for Finite Closed Systems

(r./1,)=50 ) (r,/7,)=100
tp tp(r, 17.)? pD(l,tD) rglr, tp tp(t /7.2 PD(LtD) plr,
25 0.01 2.062 0.154 100 0.010 2.723 0.149
50 0.02 2.388 0.209 250 0.025 3.173 0.227
100 0.04 2.723 0.231 500 0.050 3.516 0.304

500 0.20 §3.522 0.454 1,000 {0.100 3.861 0.389
1,000 0.40 3.963 0.473 2,500 0.250 4.335 0.463
2,500 1.00 5.166 0.474 5,000 {0.500 4.856 0.473
5,000 2.00 7.167 0.475 10,000 §1.000 5.856 0.473
15,000 {2.500 8.857 0473

The data for (7,/r,)=50 are graphed as squares on Fig. 7, and the data for
(r, / rw) =100 are graphed as circles. Notice in this figure that all the data fit closely
with each other. The early data for the infinite system (the diamonds) join smoothly with
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the systems of finite radius. Also, the data for (r,/r,)=50 and (r,/1r,)=100 fit well
with each other at later times. As a good approximation at fp (rpr.) 2<0.025, all the

systems are infinite acting; and at  tp (7, / re)ZZ 0.25 , the systems act as the pseudo-
steady state equation predicts.

All this is interesting and informative, but, to be honest, it is not very useful for
aquifer problems. It is seldom of importance to consider aquifers whose 7,/r, are
greater than 50. As you might expect, it is of use for reservoir problems where 7,/r,
are nearly always greater than 50. Since these ideas have not been discussed in my earlier

notes on the diffusivity equation, I decided to include them here.

I should add that a quite nice practical use of those ideas was made several
decades ago when Al Hussainy et al. (1966) developed their concept of the real gas
potential to predict flow and depletion behavior of gas reservoirs. In developing their
concepts, they used this same radius of drainage idea to simplify the equations of transient
flow of gases.

Constant Pressure Inner Boundary

For the constant rate cases, Chatas looked at three outer boundaries: infinite,
closed and constant pressure. We might expect that, for the constant pressure cases, he
would have looked at the same outer boundaries. In Chatas’ Table 2, he lists the infinite
system, and in Table 3 he lists closed outer boundaries. He did not look at the constant
pressure case. Christine Ehlig-Economides (1979) did look at this condition; but the

smallest outer radius she looked at was rp =20 . So the results are not very useful for

aquifer flow problems. It is not too important to consider this case, so well ignore it, and

begin by looking at the infinite system in Chatas’ Table 2.
Infinite Aquifer

Note the headings in Chatas’ Table 2 for the infinite aquifer. Dimensionless time

is labeled, ¢, while we commonly use fp in present day nomenclature. The fluid influx
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term is labeled g{¢) . This is cumulative influx, and the present nomenclature we use for
thisis Qp(tp) - Dimensionless influx rate, the time derivative of the cumulative influx,
is not listed in this table, but we will discuss this later, and its symbolis gp(zp)

in present day nomenclature. Note that the values of Op (tb) grow constantly with
time and become quite large, as we should expect, upon reflection.

It should be of interest to look at the rates of influx as a function of time, for we
know from well testing theory, that after a period of time, we would expect the log
approximation, Eq. 13, to be valid. To test this idea out, I have listed many values of pp
for the infinite system from Chatas’ Table 1, values of 1/gp from Ehlig Economides,
from the attached table on the next page, and compared them with the iog approximation
(Eq. 13) in Fig. 8 on page 41. The data for this figure are tabulated on page 42.

A look at Fig. 8 shows that, for the constant rate case, pp approaches the log
approximation solution quite closely at times, (tp) , ranging from about 20 to about 100,
depending on the accuracy we choose to invoke. The constant pressure data (1/gp) also
approach the log approximation, but at a much slovyer rate. Even at tp =1,000, the

error is still over 3%. So, in brief, this concept is not at all useful as a way of simplifying
aquifer influx calculations. The only insight this exercise provided us was the knowledge
that the results behave in a logical manner in a wﬁy we would expect them to. It turns out,
howéver, that some of the concepts in these notes and graphs can\be used to work out
approximate equations for the infinite aquifer with a constant pressure inner boundary.
These ideas will be discussed next.

For the constant rate inner boundary, we noted in the narrative following Eq. 12

that the very early time data closely followed the (tD )1/ 2 equation. Th1s is also true for
the constant pressure case. It seemed likely that this idea could be extended empirically

by édding a term using #p to some other power. It turned out this idea worked

well up to a time, tp =10 . The following equation was found to fit the tabulated data,
0p (tp)=1.058 42 +0.510 £5°° (28)
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Flow Behavior for Constant Pressure Inner Boundary and Infinite Outer
Boundary, Skin =0 ; Elig-Economides (1979)
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Comparison of pp and 1/gp (Infinite Systems)

Time Constant Pressure Inner Boundary Constant Rate Inner Boundary
D 4D 1/gp pp
0.10 2.2489 0.445 0.314
0.20 1.7153 0.583 0.424
0.40 1.3326 0.750 ' 0.565
0.70 1.1025 0.907 0.702
1.0 0.9838 1.016 0.802
2.0 0.8006 1.249 1.620
4.0 0.6644 1.505 1.275
7.0 0.5793 1.726 1.500
10 0.5339 1.873 1.651
20 04612 2.168 1.960
40 0.4040 2475 2.282
70 0.3664 2.729 2.550
100 0.3456 2.894 2.723
200 0.3108 3.217 3.064
400 0.2820 3.546 3.406
700 0.2623 3.813 3.684
1000 0.2510 3.986 3.858

A comparison of this equation with Chatas’ Table 2 is shown on the fo]lowiﬁg page.
Actually, for this comparison, we did not use Chatas’ tabulated results, for we found that
there are some minor errors in his table. The more recent work by Ehlig-Economides
(1979) was used to fit and evaluate Eq. 28, and also in the longer time matches that will be
discussed soon. A copy of her thesis table is on page 40. It does not extend to as short a
time as Chatas’ table, so the first two time values in the following table are from his work,

while the remainder are from Ehlig-Economides.
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Early Water Influx Calculations
QD for 0.01< tp <10.00

Op (tp)=1.058tH2 +0.510 £3°°; Eq. 28

) Optp) Op(tp) % Error
Eq. 28 Ehlig-Economides
0.01 0.1139 0.112 +1.7
0.05 0.2710 0.278 -2.5
0.10 0.3987 0.404 -13
0.20 0.4929 0.598 -0.9
0.50 1.0211 1.024 -0.3
1.00 1.5680 1.568 0.0
2.00 2.4479 2.446 +0.1
5.00 4.5367 4.534 +0.1
10.00 7.3968 7.402 -0.1

Notice that the fit is quite accurate over this range. The values at ¢p =0.01 and 0.05
show rather large errors of up to 2.5 %, but these are usually not too important in
practical use. Further, there is likely some inherent error in Chatas’ table for these low
values of tp, for they do not quite behave logically, based on the trend one would expect.
This could have easily arisen, for very many terms of the infinite series are needed to
calculate the early time solutions. But, in any case, for practical application, Eq. 28 is
quite adequate up to zp =10.00 .

At late time, the curves in Fig. 8 give us some insight on how to develop an
approximate equation using a semi-logarithmic approach. It seems likely that an equation

of the form,

D a+bIn(s 29
Op(tp) ¢ (p) @
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might be a useful way to handle the long time behavior. Itis! However, we would like to
extend this equation to a shorter time range if possible. A useful way to accomplish this
goal is to add an emperical constant to the zp, on the left-hand side of Eq. 29. The final

resulting equation I found was,

tp -14

30
0.0407 +0.4887 In(tp ) G0)

Opltp)=

This equation fit Ehlig-Economides’ tabulated data from #p =10.0 to ¢p=100,000, as

shown in the table below.

Late Time Water Influx Calculations

Op(tp) for 10<1zp <100,000
Op(tp)=(tp —1.4)/[0.0407 +0.4887 In t5,] =Eq. 30

tp tp—14 In tp Op(tp) Op(tp) % Error
5439 Eccl)il:)hxﬁides

10 8.6 2.30259 7.376 7.402 -0.4
20 18.6 2.99573 12.361 12.321 +0.3
50 48.6 3.91202 24.891 24.845 +0.2
100 98.6 4.60517 43.034 43.029 +0.0
200 198.6 5.29832 75.513 75.595 -0.1
500 498.6 6.21467 162.00 162.24 -0.1
1x10° 998.6 6.90776 292.29 292.64 0.1
2%103 1,998.6 7.60090 532.21 532.54 -0.1
5%10° 4,998.6 8.51719 1,189.27 1,188.8 +0.0
1x10% 9,998.6 9.21034 2,201.5 2,198.6 +0.1
2 %104 2 %x10% 9.90349 4,097.6 4,088.7 +0.2
5%x10% 5%x10% 10.81978 9,383.6 9,352.7 +0.3
1x10° 1x10° 11.51293 17,646 17,573 +0.4




Clearly, these two equations do a remarkably accurate job of predicting water
influx for a radial infinite aquifer. The time limit of fp = 10%, is far larger than would
normally be needed for water influx calculations.

The reader might be interested in the exact time range to use to switch from Eq. 28

to Eq. 30. I've evaluated these equations in the range near tp =10, and found that they
were identical at fp =114 . So this should theoretically be the crossover time.

However, a time of #p =10 would be quite adequate for good accuracy.

Closed Outer Boundary

In thinking about a closed outer boundary, with a constant pressure inner
boundary, we should realize that, after a period of time, water influx will stop. This will
occur when the entire aquifer has been depleted to the pressure level set at the inner
boundary.

We can calculate the values of maximum cumulative influx we can expect for a

given system using simple material balance principles, as follows:

= 0ft) ‘
AP = ) ; 31
g V4 c,qZ)h(re2 - r%) : Gh

The variables in this equation can be put into dimensionless form. For pressure, the result
is,
-I-)-D = P—Di = AP (322)
Pw—Pi Pw—DPi

At the time when the average pressure equals the inner boundary pressure, p,, , Eq. 32a

simplifies to,
— P—Di Ap
Pplee)=L—Ffi=—=F = (32b)
Pw—Pi Pw—Di
The cumulative influx term, Q(¢) , in dimensionless form, is,
t
Op(tp)= () (33)

27r¢cthr1%(Pi - Pw)
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When Eqgs. 32b and 33 are substituted into Eq. 31, the result is,
2 2 _
QD(w)=(re/rw) 1_rp-1 (34)
2 2
We can test the validity of this equation by looking at the long term results in Chatas’
Table 3. At rp =2.0 the long time result is 1.500, just as Eq. 34 predicts; at rp =10.0,

it is 49.36 in the table compared to 49.50 from Eq. 34. Clearly the time data were not as
complete in this table as they should have been. Other radii show similar long time results.

The early time data in these tables also behave logically. We would expect that, at
early time, the effect of the outer boundary would not be felt. So the finite systems should
act the same way as an infinite system. At rp =2.0 and 5, =0.10 , the tabulated value
for Op is 0.404 in Chatas’ Table 3, exactly the same as it is in Table 2 for the infinite
system. At rp =10.0 and ¢p =10, the value for Qp in Table 3 is 12.32, again exactly
the same as in Table 2. This is the reason that Chatas started his listings in Table 3 after a
period of time, for he recognized that the early time data would be the same as in Table 2.

Ehlig-Economides, in her Ph.D. dissertation, looked at the behavior of reservoir
flow for a constant inner boundary pressure. One important conclusion she reached was
that all the finite systems exhibit exponential decline behavior once the outer boundary is
felt. Of course this behavior should also be found in finite aquifers.

It is interesting that neither van Everdingen and Hurst (1949) nor Chatas
recognized this fact. It’s likely that the reason she noticed it, and they did not, is because
she also calculated rate data in her work, while they only looked at cumulative influx data.
It turns out, however, that if rate data show an exponential decline, so will cumulative
influx data, if they are graphed properly. Il discuss the ideas behind exponential decline
to show how these equations are developed, and then show how these ideas can be used
to tranform Chatas’ tabulated results into simple equation forms.

For any system, we know that the flow rate is proportional to the pressure
gradient. For any finite system, after a time, the flow rate at the inner boundary is also

proportional to the difference between the average pressure and the inner boundary




pressure, as follows.

alt)= 01(1[2 - | 42¢) 69)

It was this concept that led to Eq. 20 of these notes. Also, we should realize from general
material balance concepts, that we can define cumulative influx as follows,

Chlpi—Dlt
Q(t) - 2[pl p( )] (36)
(Pi - Pw)
We can now combine Egs. 35 and 36 to get,
1 do@)
0B =C [ C dt ] (372)
which can be rearranged to,
t o
fdt= 22 i dQC (37b)
0 1 0 2-C
which, when integrated, becomes,
=G m[____cz ] (382)
C1 C2 - Q(t) \

This is the form of the resulting exponential decline equation when it is expressed in terms
of the cumulative production. The argument of the log term in Eq. 38a can be expressed

as a rate function rather than a cumulative production, using Eq. 37a, as follows,

G-00)_, 20 _90 (39)
G G G
As a result, Eq. 38a becomes,
t=&1n[£1_] (38b)
G 9@

which is the form of the exponential decline equation most commonly seen in various
references. We, however, will concentrate on Eq. 38a, for our tabulated influx data are in

terms of cumulative influxes.
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Next we need to evaluate the constants, C; and C, inEq. 38a. At time, t=0,

O(t) =0, and either from Eq. 37a or Eq. 39, we can define Cq ,
q(®)=q0)=C (40)
At the other end of the time spectrum, when ¢=-co, the log term in Eq. 38a must be

infinite, so we can conclude,

0()=0(2)=Cy 41)
As a result, Eq. 38a becomes,
9 (), 0 (=) .
=90 [Q(w)—Q (z)] o

Equation 38c is only valid from the time when exponential decline begins.
However we can extrapolate the equation back to =0 , and it will change to the

following approximate form, which is not quite correct, but very nearly so.

t

_2(=)-0(0) ln[Q(w)—Q(O)] (38d)
q(0) 0(=)-0()

We also would prefer to write this equation in dimensionless terms, for the tabulated data
are dimensionless. Since all the terms outside the logarithm combine to be dimensionless,
and the ratio inside the log term is also dimensionless, the resulting equation can be
written immediately,

p=22()=0p © m[ QOp (=)=0p (0) ] (38¢)

gp (0) Op (=) -0p (tp)

It only remains to evaluate these terms from first principles and from the data in Chatas’
tables.

The evaluation problem is a bit more difficult than it first appears to be. The
reason can be seen by comparing the pressure fields that are developed for the constant
rate depletion system with those seen for the constant pressure system. These are shown

schematically in Figs. 9 and 10. First look at the constant rate case, Fig. 9. Note that the
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pressure fields will look exactly like each other, merely dropping with time. It was this
concept that allowed us to derive the pseudo-steady state equation, Eq. 20.

For the constant pressure depletion, Fig. 10, the shapes of the curves are all
similar, but their slopes decrease as the system depletes. This, of course, is reflected in the
decreasing rates as they deplete. As far as I know, no simple analytic solutions have been
derived for this type of depletion. I have been working on some ideas to define these
equations analytically, but have not yet come up with any simple equation forms that
correctly honor the boundary conditions and the necessary material balance principles in
the way that the pseudo-steady state equation does for the constant rate case.

I have however, come up with an approximate way to express the behavior of Fig.
10. The idea is as follows. At any time, ?p, I assume that the pseudo-steady state
equation is valid for the particular pressure range and rate that would be associated with
that time. In essence, when doing this, I'm assuming that the pressure field in Fig. 10
declines everywhere at the same rate as it would in the pseudo-steady state formulation, as
illustrated in Fig. 9. When first glancing at those figures, this appears to be a grossly
erronious assumption, but it is not néa.tly as bad as it appears. The reason is that the radii
on these figures are on logarithmic coordinates; and in reality, most of the volume being
* depleted is at the larger values of rp, where the shapes don't change dramatically. Using
this idea, the predicted depletion rate will be greater than is actually taking place, but not
much greater.

All these ideas require a number of graphical procedures and calculations, plus
some correlation work to correct for flow equation errors discussed above. The

procedure I used was as follows. First I graphed [0 (=) —Qp (tp)] from Chatas’ Table
3 against ¢y on semilog paper, as suggested by Eq. 38e. The straight line portions of
these graphs were extrapolated to fp =0. These are the correct values of
[Q p(e)—0p (O)] to use in Eq. 38e. After all of Chatas’ tables had been evaluated using

this procedure, an empirical equation was derived to account for these errors. It was only

a function of 1, /r,, , as we would expect.
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Finally, I evaluated the slopes of the semilog straight lines, and compared them to
the slopes one would calculate using the pseudo-steady state assumptions for the terms in
front of the logarithm in Eq. 38e. Of course, there was a slight error, which I correlated
against r, /r,, .

Since all this procedure may be a bit hard to follow, Il show a detailed set of
example calculations, for rp =4.0 , to show how this procedure was worked out. For

rp =4.0, from Eq. 34, we can calculate Op (o) , as follows.
Op (=) =[(r, I 1,,)* —11/2

=[(4.0)% —=11/2 =17.500 (42)

The appropriate data from Chatas’ Table 3 are listed in the table on the next page.
From the graph of the data, Fig. 11, page 54, it is clear they fit a semilog straight line for
times, tp =2.00 . To evaluate the slope, I used values from the table at #p =2.0 and

tp = 26.0.

tp=200 , Op(tp)=2442 ; QO (=)-0p(tp)=5058

tp =260 , QOp(p)=7377 ; Qp(<)-0p(tp)=0.123
We evaluate the slope as follows,
Atp _ 26.0-2.00
In[AQp (2.00)]-In[AQp(26.0)] In(5.058)—1n(0.123)
=6.4576 43)

Using the slope from Eq. 43, and the value of Qp(e0)—0p(2.00) equal to 5.058, the
value of Qp(e2)—~0p(0) can be easily calculated,

200
In[Qp (=) -Cp(0)] = cas76 " In (5.058)
Op (=) -Qp(0) =6.8942 (44)
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Exponential Decline Data for 7,/ r,, = 4.0

Op () =[(r, /1,,)* -11/2=15/2=175

'p Op(tp) | 7.5-Cp(tp)
2.0 2.442 5.058
2.2 2.598 4.902
24 2.748 4.752
2.6 2.893 4.607
2.8 3.034 4.466
3.0 3.170 4.330
3.25 3.334 4.166
35 3.493 4.007
3.75 3.645 3.855
4.0 3.792 3.708
4.5 4.068 2432
5.0 4.323 3.177
55 4.560 2.940
6.0 4779 2.721
7.0 5.169 '2.331
8.0 5.504 1.996
9.0 5.790 1.710
10.0 6.035 1.465
12.0 6.425 1.075
14.0 6.712 0.788
16.0 6.922 0.578
18.0 7.076 0.426
20.0 7.189 0.311
240 7.332 0.168
26.0 7.377 0.123
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Figure 11. Exponential decline graph for constant pressure

depletion, rp = 4.0.
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Thus the value of Qp(0) for this rp (rp =4.0) is,
Op (0) =7.500—6.8942 = 0.6058 (45)

The values of Qp(0) for all the radii were correlated into an equation which will be

discussed later.
Next I calculated the approximate value for gp (0) assuming the pseudo-steady

state equation was valid. This equation is,
2
1 _pPm 1 @o’n@ 1
ap©) B-1 2 (40)2-1 2
=0.9787 (46)

Thus the approximate value for the slope is,

Op(=)=9pO) _ ¢ 2947 (0.9787) = 6.7474 47
gp(0)

The actual slope is Eq. 43, while the approximate slope is Eq. 47. The error is thus,

6.7474

=1.045 (48)
6.4576

Slope Error =

The values of these errors were correlated into an equation for all radii. This correlation
equation will be discussed later.

Note that there were two empirical equations developed to evaluate the parameters
in the decline equations. The first one mentioned was for Op(0), as discussed after Eq.
45. Values for Op(0) were evaluated for all the rp’s in Chatas' Table 3. The results

are shown in the table on the next page, along with some other columns of numbers,

whose meaning will be discussed next.
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Correlation for Qp (0)

™» | 'p =1} From Chatas’ Qp(0)-0.013 | Calc. % Error
Table 3, Op (0) 0p(0)
1.5 0.5 0.0945 0.0815 0.0943 -0.21
2.0 1.0 0.1890 0.1760 0.1886 -0.21
2.5 1.5 0.2925 0.2795 0.2885 -1.37
3.0 2.0 0.3896 0.3766 0.3923 +0.69
3.5 2.5 0.5001 0.4871 0.4990 -0.22
4.0 3.0 0.6058 0.5928 0.6081 : -+0.38
4.5 3.5 0.7141 0.7011 0.7193 +0.73
5.0 4.0 0.814 0.802 0.8322 +2.24
6.0 5.0 1.064 1.051 1.063 -0.09
7.0 6.0 1.300 1.287 1.298 -0.15
8.0 7.0 1.540 1.527 1.539 -0.06
9.0 8.0 1.798 1.785 1.783 -0.83
10.0 9.0 2.050 2.037 2.030 -0.98

In the second column, are listed values of rp —1 , for this was found to be the best
way to correlate the data. The third column shows values of Op(0) calculated by
extrapolating Chatas' data from Table 3 to zero time. A log-log plot of rp —1 versus
Op(0) was almost a straight line, but curved slightly. By trial and error, I found that it
could be straightened by subtracting 0.013 from QOp (0), and these values are tabulated in
the fourth column, and grapbed in Fig. 12, page 57, along with the empirical straight line
found by least squares fitting of the data. The resulting equation is,

Op (0) =0.013 +0.1756 (rp—1)+1 (49)
The next two columns show the calculated values of Qp(0) and the errors compared to

theT data used in Column 3. Note that the maximum error is 2.24%. This is very good
indeed! Remember that it is not the value of Qp(0) that is needed, but rather the value
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Figure 12. Correlation of @, (0) versus rp for constant
pressure aquifer flow.
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of Qp(e)—0p(0). Atsmall rp (rp =1.5) , Qp(0) is only about 15% of QOp(e),
and the ratio decreases at higher 7p’s , so that at rp =10 , @p(0) is only about 4% of
Op (=) . Thus the actual errors in Qp () ~Qp (0) are consistently below 1%.

Next, I looked at the errors in the slopes calculated using the pseudo-steady state
approximation. For rp =4.0 , the value of 1/gp (0) was 0.9787 (Eq. 46), the calculated
slope was 6.7474 (Eq. 47), compared to the actual slope from Chatas’ Table 3 of 6.4576
(Eq. 43). The ratio of these slopes (the error due to the pseudo-steady state assumption)
was 1.045 (Eq. 48). This same procedure was carried out for all the rp’s in Chatas’
Table 3, and the results are listed in the table below, along with some other columns

whose meaning will be discussed next.

Exponential Decline Slopes

™ rg —1 1} Error Ratio 0.057 Calculated Error % Error in

(7% _1)0'297 Ratio (Eq. 50) Approx. Eq.
1.5 1.25 1.021 0.0533 1.0167 -0.43
2.0 3.00 1.030 0.0411 1.0289 -0.11
2.5 5.25 1.033 0.0348 1.0352 +0.22
3.0 8.00 1.042 0.0307 1.0393 -0.27
35§ 11.25 1.042 0.0278 1.0422 +0.02
40§ 15.00 1.045 0.0255 1.0445 -0.05
45§ 19.25 1.049 0.0237 1.0463 -0.27
50§ 24.00 1.051 0.0222 1.0478 -0.32
6.0 § 35.0 1.051 0.0198 1.0502 -0.08
7.0 1 48.0 1.054 0.0181 1.0519 -0.21
80} 63.0 1.052 0.0167 1.0533 +0.13
9.0 800 1.054 0.0155 1.0545 +0.05
100 ¢ 99.0 1.057 0.0146 1.0554 -0.16
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The second column in the table lists r% —1, for this was the parameter that was found to
best correlate the data. The third column lists the ratios of the slopes found when
comparing the pseudo-steady state equation with the slopes from Chatas’ Table 3.
Remember that earlier I stated that the depletion rates using the pseudo-steady state
approximation would be greater than what is actilally taking place. The numbers in this

column, ranging from 1.021 to 1.057, indicate the small size of this error.
Next, I correlated the size of this error, as a function of r12) —1, with the following

equation.

0.057
Error = 1.070 ———p55+ (50)
0% | ,

The power function portion of this equation is shown in the fourth column, and the
calculated error ratios from Eq. 50 are shown in the fifth column. Finally the errors in the
calculated slopes are shown in the sixth column. Note that the maximum difference is
0.43%, a remarkably accurate result! Thus we now can calculate all the decline portions
of the finite constant pressure aquifers with considerable accuracy using simple equations.
In brief then, we now know we can calculate the early time constant pressure
aquifer data using Eq. 28 or Eq. 30, depending on the time range required, and we can
calculate the later time (depletion ) history using Eq. 38e. It only remains to define the
time to switch from infinite-acting to finite-acting (depletion) behavior. Again this
required correlating the data in Chatas’ Tables 2 and 3 as a function of rp, . The equation I

came up with was,

(D) switch = 0.1600(rp =1)>** ~ 1)
Equation 51 is not very accurate. The reason it is not, is that for all rp’s, the infinite-
acting data and the finite-acting data were quite close to each other over a rather broad
time range. Thus the precise times could not be defined very accurately. This, of coursve,
is good news, for it almost guaranteed that all the resulting calculations would be

reasonably accurate.
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To evaluate the accuracy of these equations at the times when we switch from
infinite acting to finite acting behavior, I have listed all the influx values from Chatas’
tables and from my equations in the table below. In this table, the first column shows all
the rp’s (7, /r, values) listed in Chatas’ Table 3. The second lists the switchover times
calculated by Eq. 51; while the third column shows the actual times used. These times
were picked to be near the calculated times, and also compatible with the listings in

Chatas’ tables.
Influxes From Chatas’ Tables 2 and 3
Compared to Approximate Equations
Calc. o Acting Op Finite Acting Op

D | ED)swirch | (®D)swirch| Eqs. 28 | Chatas’ | Eq. 38¢ | Chatas’ | MaxX.
Bg.51 | U | .0430 | Table2 Table 3 | Diff

(%)

1.5 i 0.035 0.050 0.2710 { 0.278 | 02753  0.276 |2.58
2.0 ¢ 0.160 0.15 0.5022 i 0.520 | 0.5064 ; 0.507 |3.54
25 ¢ 0392 0.40 0.8927 : 0.898 | 0.8940 : 0.897 {0.59
3.0 ¢ 0.740 0.70 1.255 1.251 1.257 1.256 |0.46
35 ¢ 1.212 1.00 1.568 1.569 | 1.574 1.571 |{0.56
40 | 1.814 2.00 2.448 2447 | 2.443 2.442 10.24
45 i 2.55 2.50 2.836 * 2.836 2.835 |0.04
50 : 343 3.50 3.554 * 3.552 2542 10.34
6.0 i 5.61 6.0 5.150 5.153 | 5.144 5.148 | 0.17
7.0 | 839 9.0 6.859 6.869 | 6.853 6.861 |0.23
8.0 i 11.80 12.0 8.446 8.457 | 8.436 8.431 {0.31
9.0 i 15.85 15.0 9.970 9.949 | 9.932 9.945 | 0.38
10.0 20.6 20.0 12.36 1232 | 12.29 1230 0.57

The fourth and fifth columns compare the Qp,'s for the infinite acting system: the
fourth column is from my Eq. 28 for rp's up to 7.0, and from Eq..30 for the three larger

rp's; while the fifth column lists the results from Chatas' Table 2 for these same times.
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Note that there are two blank spots in the Chatas’ listings. This is because there were no
listings for these times in his Table 2. ~

The sixth and seventh columns show the same kind of information for the finite
systems. The sixth column shows the predicted values of Qp from Eq. 38e, while the
seventh column shows values listed in Chatas’ Table 3. It is of interest to realize that, at
any rp , all four values of Qp are very close to each other, as of course they should be.
To compare them in detail, I've listed the maximum differences in the Qp listings in the
eighth column. Note that the first two show differences of 2.58 and 3.54%, while all the
others are less than 1% in maximum difference. This is a remarkably accurate result! As
I've said earlier, I have some doubts about Chatas’ tables at small values of ¢p , but even
a 3.54% error would be satisfactory.

An indication of some of the inconsistencies in Chatas’ tables can be seen by
looking carefully at the table listings for rp =3.0 and 3.5.If rp =3.0 , the ¢p used was
equal to 0.70. In Chatas’ Table 2, the infinite system, the value for Qp is 1.251, while
for the finite system it is 1.256; a larger value, which of course, is impossible. The same
behavior is seen at rp = 3.5; the infinite system Qp is 1.569 compared to 1.571 for the
finite system.

The final evaluation is to compare the calculated exponential decline slopes (using
all the material discussed here) with the slopes found from Chatas’ Table 3. The equation

for the decline using my method is as follows,

Calculated Slope =22~ 9p(® (52)
’ qp(0) (Error)

In this equation, the term Qp (e0) —0Op(0) comes from combining Egs. 34 and 49. The
rate at tp =0, gp(0) , comes from calculations similar to Eq. 46, and the error is Eq.

50.
In the table on page 62, I've compared the results from Eq. 52 with Chatas’
slopes, using calculations similar to Eq. 43. In brief, the decline rates calculated for these

systems are quite accurate.
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Comparison of Slopes From Chatas’ Table 3
With Slopes From Eq. 52

16} Decline Equation Slopes Error
Eq. 52 Chatas’ Table 3 %
1.5 0.1199 0.1199 0.00
2.0 0.5406 0.5384 0.41
2.5 1.334 1.332 0.15
3.0 2.555 2.537 0.71
3.5 4.251 4.248 0.07
4.0 6.461 6.457 0.06
4.5 9.214 9.197 0.18
5.0 12.537 12.580 -0.34
6.0 21.02 21.01 0.05
7.0 32.07 32.03 0.12
8.0 45.87 4591 -0.09
9.0 62.55 62.52 0.05
10.0 82.16 81.98 0.22

In general we can conclude that aquifer influx history can be calculated easily for
any radial system, using simple equations rather than voluminous tables. Further, the
process is easier. But probably the most important aspect of this rather voluminous
exercise, was to show the nature of the aquifer influx equations and how they behave. For
the infinite system, simple equations are valid, and they behave logically. At short times
the influx history acts like an extension of the very short time equation; while for long
times the influx history is semi-logarithmic in form, as we might have expected. In the
finite systems, after a period of time, the systems show exponential decline behavior, and
the values of the decline intercepts and slopes behave in the logical manner one would
expect, based on the rate equations and on material balance principles. These are
important ideas that need to be emphasized, for often such ideas become lost when results

are expressed in infinite series equations or in tables.
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Superposition

Chatas’ tables are interesting and useful, but they normally cannot be used directly,
for it is seldom true that either rate or pressure are held constant at the reservoir/aquifer
boundary. This is not a serious problem, however, for we can invoke the concept of
superposition, which I'll discuss next.

There is a general concept in mathematics relating the time integral of two
variables called the Faltung Integral, Duhamel’s Integral, or the convolation integral, as

follows,

t

F@) =] R@-7)F(r)dr (53a)
0

=} F(t-7)F (r)dr (53b)
0

where either way of handling the integral gives identical results. We also commonly call
this the superposition integral when handling well testing and aquifer flow problems.

The usual practical way of handling this integral for water influx is as follows.
D )
Op(tp)= | %QD (tp-7)dr (54a)
0

Normally the pressure history is not known analytically, and Qp is in tabular form, so
this integral is handled numerically, as follows.

Op(tp) = % [pp (tpi) —Pp (tpi-1)1Cp (tpn —pi) (54b)

1=

Notice in Egs. 54a and 54b, that the indicies on time are reversed on the pp and Qp

terms in both the integral and the summation. This concept may be a bit confusing, so Il

attempt to clarify it graphically in Fig. 13.
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Figure 13. Example pressure history.




In this figure I've graphed pressure, pp, against time, 7 , for a total time, #p
Notice that the early pressure drop is smail, but it is felt for the entire time. This is
indicated in Eq. 54a as dpp /07 when 7 is small, and the Qp term is evaluated over
the entire time, fp —7. The same is true in Eq. 54b. The pressure drop is indicated at
tp; » with i small, and Qp is evaluated at tp, —fp; , with i small

As time goes on, the pressure continues to drop, but the effect of each drop is felt
for a shorter time. The pressure change is evaluated at this later time, 7 , and the
resulting Qp  is evaluated for a shorter time, #p —7. All this is quite logical, and

behaves as one might instinctively envision. I should also add that it isnt necessary that
the pressures decrease with time. They can also increase, and the formal procedure will be
the same. Some influx terms will be negative, as a result; but if the overall pressure is
lower than the initial pressure, the summation will be positive, and correct.

To show how this is done in practice, I've made a similar graph in Fig. 14, page 66,
but here also divided it into discreet stairsteps as implied by Eq. 54b. We presume that
specific data are available at specific times; p; at 7y, p; at 77, pp at 75 and so on

t0o pg at 7g; the final time, ¢p , when the total influx is to be evaluated.
To handle the summation of Eq. 54b, we first assume that over time, 7; — 7 , that
pressure actually dropped abruptly at time 7 to half the pressure drop [to (p; + p1)/2]

that occurred over the first time period. This concept is continued over the rest of the

time periods in steps. From 7; to 7, , we assume the pressure drops abruptly to
(p1+pp)/2 attime 77 . This, too, is shown in Fig. 14. This second pressure drop is
assumed to last from 7y to total time, fp (or 7g , in the illustration). This sequence is

followed for the remainder of the time history.
Notice, in Eq. 54b, that it is the individual pressure drops that are included in the

summations, not the pressure levels themselves. So Apg is defined as follows,

(pi +Pl) — Pi— D1 (55)

ADp = Ds —
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In Eq. 54b, this pressure drop is evaluated for the entire time, zp (or 7g). For

Ap , the equation is,

- - _pit + ;=

This pressure drop lasts for time #p —7y . For Ap, , the equation is,

- = + + -
Ap2=p2_p3___pl 2p2_p22p3=p1 2P3 57

This pressure drop lasts for time, #p —7, . The rest of the Ap’s. follow the same logical

order as Eqgs. 56 and 57.
Note the interesting concept that the actual p, (p;, pp etc.) for the particular

time step is not included when evaluating the effect of that pressure drop on that time
step. There is no theoretical logic for this strange behavior; it merely falls out from the
procedure used to discretize this summation.

One other important item concerns the sizes of the time and pressure steps taken.
Notice in the illustration of Fig. 14, that they were not equal, either in pressure drop or in
time step size. They don’t need to be. However, in practice, when evaluating a number of
water influx calculations with time, it is usually convenient to divide the calculations into
" equal sized time steps. This procedure makes the table lookup and the calculational
procedures more convenient to handle. Also, it seems wise here to point out that this
formal procedure is the same for any geometry and boundary condition.

In Eq. 54a I've shown one form of the more commonly used water influx

superposition integral. Actually there are four different ways to write this equation. They

are,
tp
W.)p = [ App(tp —7)qp (¥)dt ' (582)
0
7))
W,)p = | App()ap(tp —7)dT , (58b)
0
tp
Wep = | dA—ZD(QQD(tD -7)dt (58¢)
0 7
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and

tp
dApp(tp —17)
= 7)dt 58d
We)p b[ dtp —7) Qp(7) (584)
If what I've said earlier is correct, all four of these equations should produce the

same result. To test this idea out, I've looked at the results using the following equation
forms for the variables.

App (1) =ar? App(tp —1) = alty —7)°
Op (7) =bt™ gp () =mbr™ !
iA—p—D—g—:l=2aZ" qD(tD —2')=mb(tD —T)m—l

dt
dApp(tp —7) _ -
d(tD e = 2a(tD 7)

We will evaluate (W,) p(tp) using these parameters, and all four equation forms, to test
whether all four equations give the same result.

Using Eq. 58a, and substituting the definitions, we get,

W) _'p 2 me 59
e)p = | altp —7)*mbt™ 'dr (59a)
0
tD .
=mab | (t% ™1 2™ +7:m+1) dr
0

D
LJ Bc™  2ep ™ . L2 l

=ma
I m m+1 m+2|0

=mabtF+? [—l——-—z L
m m+l m+2

2ab tl”)l""z
= 59
e = D mr2) (490)
By comparison, using Eq. 58b, and substituting the definitions, we get,
D
W)p = | at?mbt-7)"ldr (60a)

0
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Equation 60a is more easily solved if we were to change the variables and integration
limits as follows,

cal tp-r=y , dr=-dy

when 7=tp , y=0 andwhen 7=0 , y=1p

So the equation becomes,

0
W,)p =— [ a(tp—y)>mby™ 'dy (60b)
tp

But Eq. 60b is identical to Eq. 59a! So its solution is also the same,

2abtE+2

(m+1)(m+2)

Wedp = (60c)

Next well look at Eq. 58d. When we substitute the definitions for the pressure

derivative and cumulative water influx terms, we get,

tD
W,)p = | 2a(tp—7)bt™dr (61a)
0

=2abl 0 gl _ ,L.m+2|tD
, | m+1 m+2l0

(61b)

O0,)p = 2ab t$+2[(m+2)-—(m+1)]_ 2ab th+2
) =

(m+2)(m+1) | (m+2)(m+1)

Again, the result is identical to Egs. 59b and 60c. Finally well look at Eq. 58¢ and
substitute the appropriate definitions. The result is,

D
W,)p = [ 2atb(tp-17) "dr (62a)
0
As before, we'll change variables and limits as follows,

call tp—-T=y , dt =—dy
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when 7=tp , y=0 ,andwhen 7=0 , y=ifp

And when these definitions are substituted into Eq. 60a, the result is,

0
Wo)p == | 2a(tp-y)by™dy (62b)
D

and, as we might have predicted, Eq. 62b is identical to Eq. 61a, thus its solution is the
same as the others.

2abt+?
(m+2)(m+1)

Wedp = (62c)

These results are remarkable, but they have far greater implications than just for
this specific case. To make these calculations, I used a general power function, m , on

the Op term, and a power of 2.0 on the App term. I could have used any power I
wished on the App term, but chose to use 2.0 to simplify the algebra. For example,

suppose I had used an equation of the form,

App(®)=at’

for the pressure equation. Using this equation form, the resulting water influx equations
would all have resulted in the following solution,

6abtE+3
(m+1D)(m+2)(m+3)

We)p = (63)

Il not bother to show the algebraic details necessary to prove this statement. The
interested reader can prove it for himself.

Clearly then, if any power could be used on either term, then any function could be
used on either term, for any function can be put into an infinite power series. Thus we can
conclude that Egs. 58a-d are always equal to each other for any superposition problem we

wish to solve. This is true for any geometry and any boundary conditions we wish to use.
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Normally we use Eq. 54a, which is the same as Eq. 58¢c, but sometimes one of the other
equation forms will be more convenient.

In brief, due to variations in both pressure and aquifer flow rate with time, some
superposition procedure must always be used in water influx calculations, as well see in
later notes on application. This statement is true for whatever inner or outer boundary
conditions are applicable, and for whatever geometry is appropriate. Next, however, Il

discuss the linear aquifer solutions.

Linear Geometry

The behavior of a linear aquifer is far simpler than that of a radial aquifer. The
mathematics of the problem were first published by Miller in 1962, but shortly after that a
quite elegant piece of work by Nabor and Barham (1964) presented the entire linear
aquifer equations and curves in a three-page paper in the Journal of Petroleum
Technology. The remarkable result of Nabor and Barham’s work was to show that all six
pé)ssible boundary conditions (Interior Boundary, constant pressure or constant rate;
Outer Boundary, closed, constant pressure or infinite), could be shown with only three
equations, or alternatively, three lines on a single graph. A copy of their paper is attached.

The reason for this behavior becomes obvious when one looks at their equations.
Their Eq. 1 shows the pressure drop for the infinite system with a constant rate inner
boundary, while their Eq. 4 shows the cumulative water influx for the infinite system with
a constant pressure inner boundary. Notice that the time relationship is the same for both

of them. Itis,

Time Function = 2,[kt/ 7w c, | (64

The careful reader will notice that this time function is not dimensionless as one
might have expected, but it is made dimensionless in their Eqgs. 9 and 12, and defined by
the general infinite acting function Fj;o(tp) as follows,

Fl/Z(tD)zz‘\/tD/” ) (65)
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Linear Aquifer Behavior

G. W. NABOR
R. H, BARHAM
. MEMBERS AIME

INTRODUCTION

Linear aquifers, either limited or esseatially infinite, may
be encountered in reservoir engineering practice. In areas
where faulting fixes reservoir boundaries, the fault block
reservoir may have an aquifer of limited extent whose geo-
metry is best approximated as linear. An infinite lincar
aquifer can occur as a regional feature whenever water
movement through the aquifer member is constrained to
one direction. Such constraints can arise from major faults,
facies changes or pinchout of the member.

Miller* pointed out that linear aquifers have received,
only meager attention in the past. He analyzed the per-
formance of finite and infinite aquifers, developed working
equations and curves, and presented examples, While Mil-
Iu’smrv&maybeused fairly easily, a separate one is re-
quired for each size of aquifer, In this paper, Miller’s
equatwnshavebeenusedasasumgpomt.Bymodxfy
ing them slightly, they can be reduced to a form which
yields a sinple workmg curve, applicable to any size of
aquifer, Thus, interpolation between curves is eliminated
and accuracy is improved.

Miller's results for finite aquifers covered only the
boundary condition of no flow across the outer aquifer
boundary, This paper also includes the case of constant
pressure at the outer aquifer boundary.

DEVELOPMENT OF EQUATIONS FOR.
LINEAR AQUIFERS

Miller’s equauons give pressure drop or cumulative in-
flux at the linear aquifer-reservoir boundary as a function
of time for the boundary conditions of an infinite aquifer
andaﬁmteaqmierwx!hsnledoutu‘boundary In addi-
tion to these equations, those appropriate for the boundary
condition of a finite aquifer with constant pressure at the
outer boundary have been developed. The approach used
gx ci;vmdopmg these equations was the same as that used

y Miller.

BOUNDARY CONDITION 1:CONSTANT RATE O
INFLUX ACROSS AQUIFER-RESERVOIR BOUNDARY

SOCONY MOSBIL OlL €O., INC,
DALLAS, TEX.

Finite Linear Aquifer, Constant Pressure at
Outer Boundary

o=l % L () (s

BOUNDARY 00NDIT!0N 2: CONSTANT PRESSURE
AT AQUIFER-RESERVOIR BOUNDARY

Infinite Linear Aquifer
W,= ¢ bhe, (Ap)[ V‘mﬁpﬁ] . . @)
Finite Linear Aquifer, Sealed Outer Boundary
W.= ¢ bhc, (Ap) [L- xS (-,l?)mp

n’=kt
( dgucl’ )] - ®
Finite Linear Aquifer, Constant Pressure at

Outer Boundary
= ¢bhe, (Ap)[( _—t— ¢}w'
"—,'i,( #)=(-5=r)) - ©

These equations are usually put in a form where dimen- .

sionless time is defined by

= ...

dpcexs
Here,xusarcfa‘cneed:stanneand;susmllymkentobe
2 unit distance. Howevu', the choice is really arbitrary, as
long as consistency is maintained. We choose x.=L; then
ke .

t,—m B €-))
For finite aquifers, L is the length of aquifer; for infinite
cases, it may be considered as an arbitrarily chosen length.
The reason for this choice will be clear later when the
performances of finite and infinite aquifers are compared.

Substituting 1, from Eq. 8, the first six equations be-
come:
BOUNDARY CONDITION 1:

Infinite Linear Aquifer Inﬁm’ta Linear Aquifer
-[d LW sp=3tLp Gy, .. ... O
TPhe Finile Lmear Aguifer, Sealed Outer Boundary
Finite Linear Aquifer, Sealed Outa Boxmdary (10)
ap=2 Fz)........
Ap_q#[(_l;.*_ kt (__)exp P kbh 2 (to :
kbh , opel] w4ny Finite Linear Aquifer, Constant Pressure at
(_ n'="kt )] @ Outer Boundary
= ...
2 =qk’;hr.(z,) S ¢ 0§
D“o:wm mannscript recelved Sn Soclety of Petroleum Engineers office BOUNDARY CONDITION 2:
1% 336s. Infinite Linear Aquifer
Revemvai” Saaradt Taritute of Pecsstonn (Itn'gf‘l’tssg‘ﬁ,‘?c?” W,= ¢bhLe; (Ap) Fy () . . . . . (12)
o
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Finite Linear Aquifer, Sedled Outer Baundary -
W ¢thC¢ (Ap) F‘ (rp) PO -
Fuu:e Linear Agiiifer, Constant Prmm at Ourer
Boundary -
= ¢bhLec, (APYFi(t)- . . . . . (14) -
Inthmeqnnuons,thcﬁmcucnsofdmmonlmMc
are:

F. n’er b) . (15)

Fy () = 2\/7.',/_-« ... . (18)

F; (t) 5-( i +-§-) —-;,- § (_—)e;p (~n'z'ts)
. ¢ o e e e e e s (17

Thmﬁmcuonsmshownmﬁg.l Thesubsmptso,
and 1 dtothea!opaoftbemasz,ap-
proa.chslargcvahm.'l‘able l'ngwmnneumlvalues

‘ THE.F-FUNCTIONS

TheFfmmmmconmmthoscMians. 1
ﬂ:mughﬁ ‘o not depend explicifly on L, the aquifer
length. ‘This dependencehasbemnmaved by the particu-
lar definition used for dimensiotiless time.

The advantages are obvious. Only a single curve or
table of values need be examined for a given boundary
condition. Even in cases where L is siot knowa. precisely,
nxseasytoassumesevualtnalvakm,mluﬂatethecor-
rwpondmgt,vams,andmsdthereqmedl’-vahmfmm
2 single curve. Allmterpolanon betweeumxselnnm

ThcbehamroftheFﬁmcnonsa:mnnmdlargeumw
is of interest. At 7,=0, the summation g in F, ()
reduces to 2 summation of (1/r?), far odd values of n.
The summation of F; (1) reduces to a summation of
(1/n"), for all values of n These sum to (=*/8) and
(= /6),soF.andF,bothnpproaehmoastpappma.ch5
Ze10. Asz,approachumﬁmty,i‘.(t,) approaches 1, and
F; () approaches (t,+1/3); i.e., becomes finear with #,.
If the-boundary conditions applying fo-Eqs. 9 through 14
are examined, it is apparent this must be the -case. For
example, in the constant rate case, with' sealed outer bound-
ary, we expect. the fotal pressure drop
with time us the quasz-stcady-sta:c condition is reached
at large time, -

It would be expected that finite linear aguifers would
behave, at small times, just as infinite aquifers do. In other
words, at low values of 1, F, (o) and F; (%) should both
approach F; (#). This is-indeed the case,asarefm'alto
Table 1 or Fig. 1 will show, .

Tablelwascompmed&gttanya.ndmg.lwasprepared

from the results. Fig. 1 clearly indicdtes that the functions -
F. (1;) and F,.(%), for finite aquifers, begin to deviate

from the infinite linear. aquifer curve, F, (), when 1, ex-

ceeds 0.25. When. 2, exceeds 2.5, the finite aquifer func-

tions may be very well approximated by. their . limiting

forms. ‘Hence,

For 1, < 0.25, F'—-F;= V=2V o/

. e e s =

Qas)
For 0.25<z,<25 use Table 1 or Fig. 1 for F,and F,
Fort,,)Z.SF =1 ... . i 19)

1 20

FE=tt—e. ... PR

Egs. -19 and 20 show, ofcouxse,thatthcﬁmlésystems
have closély approached the steady or quas:-steady state
atlongeruma‘

- B62

as)

1o become linear -

APPLICATIONS
UNITS N
The eqnauonsand gmphspmentcd mthlspapetm

‘quire that & dimefisionally consistent sét of units be used.
'ﬂma.sperhapaanobvmnspomt, but may easily be over-

" looked 'when sitempting to work in terms of practical units.

.The metric or cm-sec<cp-atm-darcy. system. is dimension-

..ally .consistent and applications eambe cartied out with-
difficulty.

out
msocanedpnmmlsymwhxchussonem
unit, ft, for measiring length’ ‘afdiarea and another, bbl,
for measuring volume, is subject to error in application.
mmostmonalapp:mch 10 be that of defining |
a special permeability unit (spu) such that
Kuyo =. 63283 kraarnies =+ v o - . (21)

Then, a consistent ft-day-cp-psi-spu. system of units may
:be used, remembering that influx rates and volumes must

’ beaxmdmtamsofeuhxcfeetmhuthanbands

SUPERPOSITION
Toea]mﬂateprmedmpwhenmeofmﬂuxbas
varied:
aAp= 2 @ Fy (1) + (@—q) Fa (o—15) +. .
kbh

‘To calculate i:_;ﬂux for a series of pressure drops:
W, =-¢dhLc,[8pFs (1) +Ap:Fu (to—tr) +. .. ]

I ¢ 1)

(2)

-where
(Ap); = (p;.x—p,..)/z e e e e e . (29
In these equations, F,(#) reférs to the particular F-
function for boundary condmnns appropriate to the case
of interest. -

Example No. 1

Over the months of April through Fune, the pressure of
a-reserveir dropped from 2,810 to 2;780 psi during initial
production. The.aquifer associated with this reservoir is
estimated to have the properties in Table 2.

Esumanetbewatunﬂ!u&omtheaquerwerthxs
period of time, assuming (1) an infinite aquifer, (2) 2
finite, seelcdaqueerﬂa long, and (3) aﬂmteaqucr
2 miles long with constant pressure at the outer boundary.

" Since the data are given in practical vmits,

knn = 6.3283 kmnln—' 6.3283 (0-3) =1,8985.
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-:TMLE !-RESSURE DROP AND CUHU!ATWE INH.UX NNCTIONS FoR

o o hm e 7 hmm i e A . rwie B
VOo(i09) ~  §.128379(1091 °° V.138379010° [.128379(10-1) 3000 - §:2Z26824(107) §2X2549010-T) E338276(100)
1.10{10-%} 133434{10-3) L1 18345410~ UBMUSAI0)  3S0(10)  6.SBIsSI(10-) 5.675581{10-Y 6769283(10%)
|m(\°o:l 126156610, -1 281566(10-Y) . . °1.263566(10"", 4,00(10-3} .  -6.972819({10-%) 7.1354958{10- T7.294231(10-3)
1.40(10¢) - 1.335114(10- 133511801073 © | 1.3389116{10-Y - 4300107 T 7329537(10%) 7:569398{10-] 7.209481(10~)

CT60I0) . 142299010 | 1427299107 wzZr299(107) 5000101 - © 7.639503(10=) 7973U510- et
1901102 $13880110-3 $13880010~2 Lussmonen © o ssuoh  Fsssmngd o saudlencs R9202720100T)
2.00( - 3 595769(10%) - 1.5935749(10-2 6.20{10-3] $.244456(10) 10 | #.528875(10)
225 169238310+ £92569(10-) 92569010~ F00{10Y]  -B.558930(107) P AL0897(107 10.331309(10=*}
255110 T84124[10%} : 20124010~ 784124{10= . 800110-Y BETAO29(10-1)  10.092530{10 1332578010~
2.80{10~] 139010 (223139{10-2 ‘8E8139(10-) .9.00{10~1]} 91202290104 - 10.704744{10-3 12.333052(10~)
290110 198671701078 | T 19BMIN0Y 198700 - WX . 931257(10<) T2eare 23 A
3.60{10-¢} .111004F10-2 2.H1004(103F - 2.111004(10-} 110 9.452902(10 183454 433329
4.00(10-%) 2.256738(10+3] * 254780103} .. 2286738110 128 9.629049{10~Y 261566 583332
wuw 2.393654(10-Y 392654(101) " 2.393434(10- 140 974710~ - 1338116 Fa3ss
500(1 231330107 Fain0- CaEmaie) . - 160 _BIIERO(10-1 AZ72Y9 9333
560010  2.670232(10% 232108 6702321103 BT 9.904312(10°7] 513880 "2
é 2.809641{10° 2.809631(10-3) . 2.809601(10-3 © 200 . 9.041703{10-2 395769 . ny:
7.00(10-3] 2.983411{102] 11(1073; 983411(10-3] 225 -9.968541{10-2 &92569 583333
8.00(1 2.191537(10+3 ,191532(10- 1191339(10~ 2.5 9.923024110-1 784124 2333
* 9.00(104) 3333007 - 33e5138(10 \385141(10~3 . 2m - 9.991902(10-Y 238139 133393
1,00(10-2 3 071  * 3.548248(10-3 3.} 0=y . 330 . 3 03, 985717 3
Voo - 3Fawones. s:mwgo-: S50 ; 3.50 9.998850{10-1 111004 3
umg:;; 398928001072 - 398PA2I10-Y) - 3.989546(10-3 490" 9999581(10-1) . 2.254758 4
14008 -+ RIZIGI5007) - &22008(107) - 4222401102 . 450 . - 9.999278(10-% 2 303854 4
1,60{10~) 43512368(10-7)  4.51381Z{10- 4.514885(103) 500 92.999954(1071] | 252313 5

1.801073) | 4THEIZ(10-3) . ATEIION0 . 4.789997(10] 560" 9.999992(10- 2.670232 s,
n.oono-!;. £.040878(10~1) - 5.045265(103 5'651652(10%)° 620 9.999908(10-1 2.809541. é
2zs009)°,  s3k1a240 Saaanon - gagx0n0- 7.00 10.000000(107). - 2985411 7

5D(10~1 622335(10-3 296(30~2 $1456(107 5.00 . 10.000000( 2191538, 23
Erei ..mmnod . St 6.005516{10~ v.00 . 10.000000{10~ 31385138 92
For all cases, t=91 days and L’is 2 miles=10,560 ft. . _ CONCLUSIONS ]
> k‘ ) .
b= m The equations describing linear aquifer bebavior may be
| PROS (1.8985) (91) . . reduced, by a particuler definition of dimensionless time,
————————025 G T+ i0560 3 10. . to thiree- working curves. These curves are.appropriate for

) (0.25) (1) (6:2) (10%) €10,560)* . - both infinite and finite aquifers of any size, for all com-

Since the pressure drop occurs over a period of time, di

mon -boundary conditions.

supu‘posmon should be used. Assumption of a'linear drop :

A single curve applies for ahy gzven set of boundary

with time is shown in Tablé 3. This o
The water influx is given by Eq. 23:° . conditions. eliminates interpolation within a family

of curves, and thereby xmprovs the speed and accuracy
Wi= ¢ b Lc, %A p; Fs (te~1m) 0_‘ of caléulations.
025 00! 1) (10,560) (6.2) (1 -
5342_% %’) 0).¢41) ( 560) (62) (10%) (3) Very simple fimiting forms of the equations may be
E: Ie N . ;used in place of the working curves at short times
xample No. 2, : (t:<0.25) and at long times (£3>2.5).

Assume an aquifer of the same properucs as used i
Exa.mple 1, Case- (2). Estimate’ the-pressure drop at the

aquifer-réservoir boundary for a constaot influx rate’ ofj : ACKNOWLEDGMENTS
s3r B/ch:"fi;; ?_‘ g?i::}esﬁr;"d i " The suthors wish to thank the management of Socony
s - 1l
= 293.1cuft/D Mo_b,‘ 0Oil Co. for permission to publish this paper.
Smcethesamet,equahonapphsmfh:scaseaspx‘e—_" ) .
viously,-#,=1.0. Also, k,.,..—1.8985. Thc prasure drop is .+ NOMENCLATURE*
given by Eq. 22: aul ; - b Width of aquifer, cm or ft
Ap = k T F,(:,,) . ) - = Aquifer compressibility (total), atm™ or psi”
H . . . h Thickness of aguifer, cm or ft
_ _(298.1) (1) (10,560) (1.333) =27 psi “'& = Aquifer permeability, darcies or.spu**
(‘1'.8985) (2,000) (41) T Ap = Pressure drop, atm or psi
N . - . . . g = Flow rate, cc/sec or cuft/D
: e . - t = Time, sec or'days
b 22,000 ‘TAILE 2—AQUIFER PROPERTIES . - x, = Unit distance, cm or ft
zE-[”, e . - F = Function of #;, dimensionless -
) éE??zas n ; ’ ) 7 L= Length of aquifer, cm or ft
B = P04} palnt (o 8 oy . _ . ) . u; g::ter mﬂuc:; vohnne, ccorcuft
TABLE 3—INFLUX- EUNCTION CALCUTATIONS .. ; ¢ = Potosity, dimensionless
-_:Jnf'tl:" '2—:1,3 In,—;n! Am F-lin-lnn Fum:—mn F;m;-m) A
05. . 393 ok 2 S S S . J=index
gE g ©om W W keie
2 8py Fa to—100) : 20217 2972 T = D = dimensionless. okok
'Cm . TABLE 4—WATER INFLUX RESULTS. .. : R
~Case_ F Wolah) ° We (Bbl)-  Avg.q (8/D) SWhere tyo units ave given, xystem figst followed
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where tp =kt!puc,I?
and L = any arbitrary distance, for the infinite system

Other comparisons are also interesting. Il address the dimensionless equations for
this purpose. Note in Nabor and Barham’s Eq. 11, for the finite aquifer with the constant
pressure at the outer boundary at constant rate, the pressure drop behavior fits the

Fy(tp) function. In their Eq. 13, for the finite aquifer with a closed outer boundary and

constant pressure inner boundary, the cumulative water influx solution uses the same

Fy(tp) function. Fy(zp)is defined in Eq. 15 by Nabor and Barham.

It is not too surprising that these two cases give the same result. For the pressure
drop case, their Eq. 11, after a period of time the pressure drop follows Darcy’s Law, and
becomes constant. For the water influx case, Eq. 13, the total water influx must be limited
to a finite value due to the sealed outer boundary. The dimensionless equations are defined
so that these constants are both equal to 1.00.

The Fy(tp) function can be expressed almost exactly using simple analytic

solutions. Remember earlier that I pointed out that the radial system exhibits exponential
decline once the outer boundary is felt. Actually, this behavior is generally found for any
bounded system, whatever its geometry. We can use this idea to test the data or Nabor
and Barham’s Fy(tp) function. Using ideas similar to those in Egs. 38c, d and e, we
would expect the tabulated data would be a straight line on semi-log paper. The table on
the following page lists their data from 0.18<7zp <2.80 , and evaluates 1— Fy(¢p) , as
suggested by the equation for exponential decline. The data are graphed in Fig. 15, page
77. These data veer away from the infinite acting data; but note the important concept
that the first data point in this table fits the infinite aquifer solution, Eq. 65. So these data
act in the same way as the radial data we discussed earlier. At early times they fit the
infinite acting equation. Then they switch immediately to exponential decline at time,
tp =0.18, as Fig. 15 shows.
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Nabor and Barham

Fy(tp) Data for Exponential Decline Graph

tp Fy(tp) 1-Fy(tp)
0.18 0.47846 0.52154
0.20 0.50409 0.49591
0.225 0.53414 0.46586
0.25 0.56223 0.43777
0.28 0.59361 0.40639
0.31 0.62268 0.37732
0.35 0.65819 0.34181
0.40 0.69788 1030212
0.45 0.73295 0.26705
0.50 0.76395 0.20605
0.56 0.79643 0.20357
0.60 0.82445 0.17555
0.70 0.85539 0.14461
0.80 0.88740 0.11260
0.90 0.91202 0.08798
1.00 0.93126 0.06874
1.10 0.94629 0.05371
1.25 0.96290 0.03710
1.40 0.97438 0.02562
1.60 0.98436 0.01564
1.80 0.99045 0.00955
2.00 0.99417 0.00583
2.25 0.99685 0.00315
2.50 0.99830 0.00170
2.80 0.99919 0.00081
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Figure 15. Exponential decline behavior for linear aguifers.
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As expected, the data in Fig. 15 are a perfect straight line. So a simple equation
could be used to predict the cumulative influx behavior with time. Since the pressure
behavior for constant rate with a constant pressure outer boundary fit the same curve, we
could also use this idea to predict the exponential pressure decline history for this case.
However, there is an even easier (but somewhat less accurate) way to handle this problem,
which I'll discuss next.

Notice in Nabor and Barbam’s Fig. 1 that, as a first approximation, the Fy(zp)
curve can be treated as two straight lines. At early time Fy(¢p) is proportional to the
square root of tp and is equal to Fj;o(tp) . At late times it is 1.00. If we were to

ignore the curvature and treat it as two straight lines, breaking at zp =z/4=0.785 , any
calculations of water influx would be greatly simplified. An evaluation of this procedure
shows that the maximum error occurs at #p =0.785 and it is about 12% too high. This
concept was successfully used by Brigham and Neri (1979) and by Dee and Brigham
(1985) using superposition calculations to simplify predictions of two geothermal systems
which exhibited linear steam influx behavior.

The last two cases which fit together are the pressure drop prediction for the case
with a constant rate and a sealed outer boundary, and the water influx prediction for
constant pressure inner and outer boundaries. These both use the F(¢p) equation,
Nabor and Barham’s Eq. 17. This behavior is also logical. With the closed outer
boundary, after a period of time the system will reach pseudo-steady state and the pressure
drop will become a linear function of time, just as it did for the radial system we discussed
at length earlier in these notes. While, with the constant pressure boundaries, after a
period of time the system reaches steady state and the cumulative water influx will rise
linearly with time, also following the Fj(¢p) function.

Notice in their Eq. 17, that the long time result for the F(zp) function is,

El(tD)=tD +1/3 (66)

79




This is the pseudo-steady state equation for linear systems,

where

b = the width of the linear aquifer
h = the height of the linear aquifer

kbhAp
quL

=1p +1/3

(67)

And now all the pressure, geometric and rate terms on the left-hand side of Eq. 67

constitute the definition for pp, for linear systems.

Since a simplification of the Fy(zp) curve worked well, it seems logical that a

similar approach would work for the Fi(zp)

curve.

To test this idea, I compared

Fi(tp) for various times against the values of Eq. 66 and F/»(tp) , Eq. 65, as shown

on the following table.

Comparisons of Fj(¢tp) with Eq. 65 and Eq. 66

to Approximate Fj(tp)

ip  FiGp) | Eq.66  Eq 66 Eq. 65 Eq. 65
U3 g F»(tp) Error

0.225 0.536 0.558 0.022 0.535 -0.001
0.25 0.566 0.583 0.017 0.564 -0.002
0.28 0.601 0.613 0.012 0.597 -0.004
0.31 0.634 0.643 0.009 0.628 -0.006
0.35 0.677 0.683 0.006 0.668 -0.009
0.40 0.729 0.733 0.004 0714 -0.015
0.45 0.781 0.783 0.002 0.757 -0.024
0.50 0.832 0.833 0.001 0.798 -0.034
0.56 0.893 0.893 0.000 0.844 -0.049
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A comparison of the results in this table is similar to the behavior we saw earlier
when looking at radial systems. At late time the pseudo-steady state assumption, Eq. 66,
is valid, while at early time the infinite-acting equation (Eq. 65) is valid. The cross-over
occurs at a time, fp , between 0.31 and 0.35 with an error of about +£0.008 or only
about 1.4%. Clearly this procedure would simplify calculations one would need to make to
predict influx of linear aquifers.

Superposition of Linear Systems

We've already discussed superposition in general, but let’s look at it in particular
for an infinite linear system. The reason is that well find that the integration can be

handled quite easily. In general, the superposition integral can be written, as follows,
D 90p (¢
Welp = [ App ap-1) 2D 4y (582)
0

For illustrative purposes let’s assume the following relationships for pressure drop

and cumulative water influx as functions of time,

App(r)=at® . (682)
App (tp—7) = altp—7)* (68b)
Op(r) =b7'? (692)

9pp@ _b@™% _ b (69b)
orT 2 27172
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Equations 69a and 69b are Nabor and Barham’s analytic solution for Qp (tp) for

an infinite linear system, while Eq. 68 is the arbitrary App(z) function I chose to

illustrate the behavior of the integrals. Substituting Eqs. 68b and 69b into Eq. 58a, we

get,
D a(tp—7)bdr
We)p = (f) 27112
Ip
=-%IZ i (t%?:"llz ~2tp7t/2 +7:3/2)dz'
0
D
abl, 2 172 4tp 32 2'2'5/2|
=—|2tpT" " — +
2 3 5 |
. 0
8abtp, 312
Wedp = 15
Alternatively we could look at this problem using Eq. 58d, as follows,
ID
dApp(tp —7)
We)p = | ﬂfD L=—0p(@)dr
0
with the following definitions:

ApD(tD—’Z') = a(tD—T)2

dApp (tp—7)

a(tD g = Zd(tD—'Z')

Substituting Eq. 68c and 69a into Eq. 58d, we get

‘D 1/2
Wop = | 2a@p—7)br*'“dr
0

_ 2ab|2tD 312 ) 275/2|‘D
B

- 5/2
= 2abt}]? 2(5) 2(3)]=8ath
15 15
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Note that Eq. 71b is identical to Eq. 70b, just as we anticipated. Further it is clear
that if the pressure history can be put into any analytic form, the water influx history can
be easily calculated amalytically. This concept bodes well for simplifying water influx
calculations for linear systems. '

Let us carry this idea further, and consider the implications of the approximations
in the previous table on the F; function (page 79) that tell us we can use the infinite acting

equation for early time data, and the pseudo-steady state equation for later time data. To
do this we realize that at early times we get,

Op () =2b(z 7)"/? (65)

‘While for late time we get,
Op(@)=b(r+1/3) ’ (66)

To solve our equation we will again assume that the pressure drop is a

quadratic,
App(tp—7) = a(tp—17)* ~(68b)
dApp(tp—7)
ZPDVDTE) o - 68
g -7) a(tp—17) (68c)

The superposition equations we will use for comparison are,

1))
_ ¢t OApp(tp—7)
Wedp = ({ Nip —7) Op (©)dz (58d)
and
tp
(We)D = J ApD (tD—T)qD(T)dT (583)
0
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For this purpose we will break these integrals up into two time periods as indicated
by our geometry. A break occurs somewhere between 7 =0.31 and 0.35. Well look at
both times for a total time, #p , equal to an arbitrary value of 1.00. I've chosen this rather
short total time purposely, for this will tend to exaggerate any differences due to the
equation approximations. Thus we will get four different results, that theoretically should
be identical, but which in practice we expect to differ slightly due to these approximations.

Looking at a break in time of #p =031 , and using the definitions for

dApp (tp—7)/3d(tp—7) and for Qp(7) , Eq. 58d becomes,

031 4ap(tp ~0)r 2z 1

Wp= | + | 2ab(tp —7)(z+1/3)dt (72a)
0 N 031
which, when evaluated, becomes.

W,)p =0.62717 ab (72b)

Using Eq. 58a instead, and differentiating Eqs. 65 and 66 to evaluate gp (7) , we get,

031 0p(tp —7) 207247 1

Wo)p = | + [ ab(tp -1)%dz (732)
0 Nz 031
which, when evaluated, becomes,
W,)p =0.62000ab . (73b)

Notice that these two differ by only 1.16%. This is certainly within the accuracy of any
field data one would normally find.
Instead if we were to break our time at fp =0.35 , Eq. 72a will merely be

changed by the integration limits. The resulting answer is,

W,)p =0.62634ab 74)
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Note that Eq. 74 is nearly identical to Eq. 72b. Similarly, if the integration switchover
time of 0.35 is used in Eq. 73a, the result is,

W,)p =0.61970ab (75)
Again note that Eq. 75 is almost identical to Eq. 73b. So it is clear that it is not the switch
in integration crossover time that causes the slight differences, but rather the form of the
superposition equation used. But in any case, it is also clear that these simplifications are

quite adequate for the engineering accuracy required.

Spherical Geometry

As I mentioned earlier, the spherical geometry is not too commonly seen in water
influx problems; but it can arise whenever there is a small oil "bubble" surrounded at the
sides and bottom by a large aquifer. The enclosed paper by Chatas (1966) discusses the
solution for this equation. It is far longer than it needs to be, for it could have been
simplified in much the same way that Nabor and Barham simplified the linear systems.

One important point in spherical flow is the fact that the vertical permeability, k,
is often far less than the horizontal permeability, k; . Chatas discusses this fact and his
Eq. 10 is supposed to give us the cbrrect value of average permeability, ¥ to use when
these permeabilities differ. This equation is wrong! The correct value for the average

permeability is,
k =k? &, I3 (76)

To derive this equation, I used the same scaling law ideas discussed in my notes on
injectivity (Brigham, 1985).

We also need to look at the transformed inner boundary that results from these
scaling laws. The z direction coordinate will be elongated as a result of this
transformation, while the x and y directions will be shrunk. As a result, the inner sphere

will be changed into “rugby ball” shape, with the ball standing on its end, an
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Unsteady Spherical Flow in Petroleum Reservoirs

A T, CHATAS
MENMBER AIME

- ABSTRACT

A description of the.geomstrical charscteristics
of spherical reservoir systems, a discusszion of
amsteady-state flow of 3uch systems and examples
of enginesring applications are presenied ai
background material. The [undamental differential

" equation, a description of average spherical

permeability and the introduction of the Laplace
transformation serve as theoretical foundations.
Engineering concepts are invastigated to indicate
paricular solutions of interast, which are analyti.
cally obtained with the aid of the Laplace transform,
These are numerically evaluated by eomputer, and
presentad in tabular form. :

INTRODUCTION .

A rtacmable mathematical snalysis of uasteady -

fluid flow through porous medis generslly requices
incorporation ©of a geomerrical symmetry. The
simplest forms iaclude the linear, eylindrical
(radial) 2nd -sphecical. Most anelytical endeavors
have concentrated on cylindrical symmetry because
it occues more often in petroleum _geservoirs,
Nevertheless, some reservoir systems do exise that
are better spprozimated by spherical geomerry,

Review of technical literawure revealed but a

single refetence to unsteady spherical flow in
petroleumn reservoirs.d The motive and purpose of
the present work was o remove this gap in technical
information, and to provide the practicing engineer
with some useful analytical tools. The mathemstical
derails nasociated with the parzicular solutions of

interest involved use of the Laplace transfore,

mation, Hyrst snd van Everdingen previously

"demonswated the efficacy of this operacional

techoique, and in many respects the present

treamment was patterned sfeer their earlier work,2
PRELIMINARY CONSIDERATIONS

GEOMETRICAL CHARACTERISTICS . . -

Geomerrically, = spherical feservoir system is
defioed at any inscant of time by two concentiic

Otiglnal manuncript received in Sccutynu'otrdw-' Englneers
2’,53;',"’.’5’4 2.7, 1985, Revised manuscripe of SPE 1108 n':l:x»u
.
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hemispheres whose physical properties of interest
vary enly with the radial dissasce. Every physical
property is_thus restricted to be a space function
of enly one variable: the distance slony a radius

‘ vector emansting from the-center.

Such a system is composed of aa outer region
and an inner region, separated by & defined intemal
boundary. The -inner tegion simply extends inward
from this boundary, whezeas the outet region extends
cutward from it to an extemal boundary. The
position of the intemsl boundary is presumed fixed,
8o that the 3ize of the innerregion remains constant.,
On the ‘other band, the position of the extersal
boundary a¢ any given instant of time i$ determined
by the distance into the system that = sensible
pressuse reaction bas occurred. Thus, the extemal
boundary may change position with time.

It inicially emeiges from the inner region and
advances -outward to its ultimace position. When
this ultimate position coincides with a geometric
limit, the reservois system is said to be limited,
When it coincides with points subject ro pressure
geadients furthest removed from the intemal
boundagy, yet shor of a geometsic limit, the system
is said td be unlimited. In this javestigation two
different boundary conditions are imposed at the
ultimate boundaries of limited systems. The firse
cequires that no fluid flow occur across this
boundsry; the second that the pressure remain
fixed st this-boundary. 35

UNSTEADY-STATE FLOW .

In a serict sease virruilly all flow phenomens
associsted with a zeservoir system are uasteady-
state. The cransient behavior of these phenomena
requites accounting, bowever, only when time
must be introduced as an explicit variable. Other-
wise, steady-state mechapics may be used,
Analytieally, steadyescate conditions prevail
in a reservoir system only over that poction of
its history when this zelation is satisfied:

2‘5&5‘3&0 B ¢ 3]

But to do this, a teservoir system must contain
either an ideal fluid, which implies a vanishing
viscosity, or an incompressible f£luid, which
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implies & vanishing compressibility; or it must have
presswes fixed with ‘time such thac the time.
detivative vanishes, Evidently, strice s:eady-sute
conditions ase virtually impossible to attain, since
these provisions are abstractions of the mind and
not properties of physical systems. From 8. practieal
standpoint, however, this fact does. not' exclude
application of steady-state mechanics, because in
many situscions Eq. 1 is.closely approximated.3-8

The significant plxysxnlytopemt: that determine

the extent of trznsient behavior in sphmcal-

Teservoir systems are wxhibited by the so-called
readjustment time which is approximared by:

2
L
2k/p |

These factors are the size of the system, its
compressibility and its mobility, When they combine
to yield 3 large readjustment time, unsteadysstate
mechanics should be used unless pressures are
invatiane, 3,5

ENGINEERING APPLICATIONS

Yhen s water drive field is charactécized by
bottomewater encroachment, the hydrocarbon
accumulation usually fills only a portion of the
total thickness of the reservoir formation and is
eatirely undezlain by water. Flow of water into the
pay zone results from a gradual and uniform rise
of the unde:lymg wates,

Of particular interest to the reservoir engineer
are methods, formally independent of material
bslance principles, for determining the water
influx into bottomewater deive fields. First, these
methods afford determination of a number of
resecvoir properties through an analysis -of the
past reservoir history by an adjunctive use with
other relations, Secondly, by independently yielding
the water influx .they provide means of predicting
future reservoir petformance. Many bottom.water
drive fields lend themselves-to the imposition of
spherical geometry; hence, :olunon: of che funda-

menul flow equations appropriate to'this symmecry -

can be used to analytieally determine the water
influx for this class of reservoir. 4.6

-Although many wells arc completed after the drill
has passed entirely through the pay formation, some
are purposely completed afteronly parttial penetration
has been effected. Sometimes such wells ace
completed after the top sucface of the tesetvois is
merely tapped by che drill, in which csse they are
termed non-penetrating wells. -

Nonspenetrating wells that occur in & telnuvely
thick formation can be created a3 spherical systems.
They can be analytically investigated by using
appropriate solutions of the fundamental flow
equations corresponding to spherical symmetry.
These investigations include flow cslculations,
analysis of deawdown and build-up tests, determin.
ation of static bortom-hole pressure, productivity
indices, effective permeabilities and evaluation of

38

damaged sand conditions. - Alto .lchough the
analytical solutions strictly tpply oaly to the
smgle-phnc flow of compressible liquids, the sesules
can sometimes be used (with proper interpreation)
the flow of gases when pressure dreps are small,
and to the simulcanecus flow of oil and gas upon
imposition of deastic assumptions, 3.4.7

THEORETICAL CONSIDERATIONS
FUNDAMENTAL DIFFERENTIAL EQUATIOR
The fandamental differential equation goveming
the dynamics of the flow of compressible liquids
through spherical teservoir systems can'be written
ss:

...zﬂ%g i..e.é&.........e)

.where the porosity, compressibilicy and mobility
are interpreced as fixéd aversges, and where the
cffects of geavity ate ue;lected. Define a dimen-
sionless length ratio, time ratio and pressure-drop
atio, espectively, as follows:

r

'0'7;"-""""'-""'(4)
2p ucr (5)
PD'PD('D"D)'M[L‘D—) P

- 20, t%)

Introduction of these relations into Eq. 3 permits it
to be rewritten as:

_52’0,,23."_0 B o
érpz Tp op ap

which cepresents the fundameatal differeatial

equation in dimeasicnless form appropriate to
zeservoir !uem characterized by spherical
symmerty,2-5,8

AVERAQE SPHERICAL PERMEABILITY

Available evidence indicates that the permeability
of potous media conscituting reservoir systems is
not isotropic in character. As a rule the vertical
permeability is less than the horizontsl, and ia
some instances the diffecence is profound. Since
sphesical symmetry embraces a theee-dimensional
geomettic space, it was felt necessary to include
the effects of this anisecopy here. The zadial perme-
ability in a spherical porous’ medium characterized
by uniform wertical and horizontal permeability,
components can be analytically described by:

Lol gin2as-l costa.. e e e e (8

% y

The average spherical permeability can then be
obtained with the volume integral:

i



I k= (2/3)”‘?. "'w

e R *in 0 drdads
. 00r¢, %

» o o2 (9)

which, upon mlustiou, gives:
3?bhu

ky+2k,

the average spherical pesmeabilicy,

‘.. .....’.'.;‘...-(lo)

APPLICATION OF THE
LAPLACE TRANSFORMATION

The (undweaul dxfienu:ul equation for a
spherical reservoir system has been expeessed in
dimensjonless form-by Eq. 7. Define-the product:.

’b-'DpDG-co'ooaaogooo.(ll)
Then Eq. 7 can be written in the altemative form:
2 r . -
“’ﬂ..............az)
érp oty

The Laplace wransform of b is pm by the
definite integral:

P {"s.xp(-s;p)d:p e e e e (13)

Multiplication by the aucleus of the transform and
integration over all time converts Eq. 12 from &
partial to the ordinary differential equation:

2 -
i—:—':b oooooo . non_oovooo(l()
d’D

The aeneul solution of this subsidiary equ-uon

can be vnttea at once:

b uCltx‘p(-rD\/-)-i-Cze!ﬁ(?D\,-) 9 o @ -(15)

where C, is an arbitrary constant,2,9-11
Particular solutions to the subsidiary equation

cozresponding ‘to specifically mposed boundaty -

conditions are obtained upon npp:oprute evaluation

of the constants that sppear in its general solution,

These particular solutions” would represent the
Laplace transforms of the required pasticular
solutions o Eq 12. The latter aze determined by
effecting the inverse ransfomations of their Laplice
tansforms. This procednre will be used to develop
the particular solutions of interést.

SELECTION: OF PARTICULAR SOLUTIONS

Reduction of Eq. 3 to the dimensionless form
depicted by Eq. 7 was effected, because the com-
plete dimensionlessness of Eq. 7 tenders-the aumer-
ical values associated with its particular solutions
entirely independent of the aéual magmmdes of

the physical properties .of any givén reservoir
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syltem. But due to the genenluy introduced, it
becomes necessary .to .zelate " certain physxcd
quanutxes associated - with absolute units of
measurement to functivas of the dimeasionless
vasiables in Eq, 7.3:5-

‘The. macroscopic radial velocxry st the internal
‘boundacy of a gbennl teservoir system is” given
by Darcy’s law: 24 ]

8."-(60)0001-0-.0....(16’

Introduction of the relaticns defined by Eqgs. 4
through 6 yields:

vel Aplr,, z")~(%§£). R ¢ )
¥

oy

which relstes the actusl velocity with the dimen-
sionless function (&p/0rp)y. The tate of fluid
influx at the intems) bounduy is given by:3.4

P [" f"rzu sin adcd_a'-zarzf (Eg
00 K

N ¢ 1)}

Then, intioduction.of Eqs. 4 through 6 yields:
k )
€ m=2nr, i Aplr,.t )(W) s

1

which telates the scmal fluid influx rate with the
dimensionless function - (6pp/drp)y.

The cumulative fluid influx at the intemal bound-
ary up to any time ¢ is given by:2

2k & (iﬂ.) dt 20
'w“ { 3, 5 . - . . (20)
Sishilarly, introduction of Eqs. 4 through 6 yields:

F--2n¢cr Ap(r‘,,t’)f (l:D) dp , . . (21)
D
1

o v (19

Fu féd: =27
4]

which relates the actuzl cumulative fluid influx
‘with the time integral of the dimeasionless function
= (3pp/3rp),. Upen proper intespretation, Egs. 17,
19 and 21 ¢can bé used to determine the fluid flow
and pressure behavior in 8 spbencal resecvoir
system, and also to indicate the appropriace choice
of pmlcuhr solutions to Eq. 7. Two distinct cases
srise: the so-called pressure and rate cases. 25

The Pressize Case

The pressure case presuimes knowledge of the
pressure conditions at the intemnal boundary of a
seicrvoir system and permits determination of the
fluid flow behavicr. Consider a spherical reservoiz
systém characterized by dimensicnless properties.
Let this system be chazged to a uait dimeasionless
preasure, and at zero time lec the pressure at the
intémal boundary vanish and remain zero. This
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condition represents the distincrive feature of the
preagure case. The problem then gemsins ¢
determine the dimensionless sate and cumulative
fluid inflox at the intemal boundary as functions
of dimensicnless time. Thiz dimensionless descrip-
tica of the fliid flow bebavior and its translstien
into sbsolute units of measurement constiutes the
peessute case, 25 )
Under the precepts of the pressure case, the
dimensionless-fluid influx tate is defined by:

3 .
¢p=eplLip) --(—-"-9) PR ¢ 23]
Irp 1 .
and the dimensicoless cumalstive fluid inflox by:

i 3
FpeFpyl,s) =~ j( ‘;D) dip.s . o (23)

Symbolically, the actusl velocity, rate and cumula-
tive fluid influx may now be expressed in terms of
ep xad Fp as follows:

k&
x=ul f)a~ ;-':' Ap(r,.0)ep(1,2p). . (24

o= el = 201, £ 300,00 €(Lep). -(25)

FwFG,0) =20ger3bplr 0F, (Ltp). . (26)

Eqs. 24 duongh 26 express the facets of fluid flow
behavior in terms of field data and the dimensionless
functions ep and Fp. By application of the super-
position principle {(Duhamel's theosem) these
functions can also be used to teeat ume-nrymg
pressure hisories.

The Rate Case
The mte casc presumes Kapwledge of the fluid

flow conditions at the intemal boundary and permits -

determination of the pressure behavios. Coasider a
dimensionless npherical zeserwoir system chuged
to a unit dimensionless pressure, and from zeso-time
onward let 2 unit dimensicnless fluid influx rate be

imposed. This condition, which expressed anslyti-

eally is:

-(—a-?pg-)nl,...........-(n)
afp

for all time ‘D» tepreseats the dxsuncuve feature of
the rate case. The problem here is t detemmine the
dimensionless pressure drop diswibution in the
system, and the pressure drop at the internal
boundary under the conditions prescribed. by Egq,
27. This dimensionless.description of pressure
behavior and its translstion into .absolute units of
measurement constitutes the rate csse,2:5

Under the precepts of the mate case, the actual
pressure distribution in the system is given by:

90

pnt) mp,~

pD(rp.zp). e . (28)

Similarly, the actusl pressure at the internal
boundary is- given by:

- ‘ - -—QL— .« o o
Peplb =P, Sebe ppll,tp) 29

These qmboli: relations ezpeess the pressuze

behnvior in terms of field dats and the dimensionless

functions pp (5, 2p) sod pp(l, tp). Likewise, by

npphunon of the superposition peisciple, these

mcum can’ be used to treat time-varying rate
ozies.

DESCRIPTION OF PARTICULAR SOLUTIONS

‘UN!:MT{.’D SYSTEK

By definiticn the extemal boundary of an unlimired
system continuously recedes from the intemal
boundary without reaching a geomertzic limit. Under
these conditions &e product 7, pp, vanishes snd Eq.
15 becomes:

b-Clcxp(-.rD\ﬁ). e o e s e (30

The precepts of the pressuce case requite thae
s dimensionless pressure drop of unity be main.
tained at the intemal boundary, and since the
Laplace sransform of unity is 1/s, it follows that:

;--‘chp[’.\,s(fpﬁl)] 9 o v e o o -(31)

which is the subsidiary equation appropriate t
the pressure case for an unlimited system. The
dimensionless fluid influx este ep can be rewsitten
in terms of b:

dop\ © f3b )
en = = -- -8} ... .32
D évp), %D . (32)

Then the Laplace transform of ep, viilizing Egs.
31 and 32,-is:

Bt et 09)

srhose inverse transformation can be written at
once as:

epula(mp)™V/2, . .. ... ... (34

.which is the dimensionless fluid influx rate of

an unlimited system. The Laplace transfom of
Fp (dimeasionless cumulstive fluid influx) is

simply:

- B
FD_?.#,-‘!-;,........css)

whose inverse eeansformation can likewise be



.wiitten at once as:

FD.QD‘}Z(—Q)U. e e eevae s o (36)
Lt WulRITYE [P
which is du(dmuuon‘l‘gl cumulative floid
influx of en unlimited system.9:11,13,14
The precepts of the rase case reguire thac &
dimensionless rate of unity be mumed ac e

intemal boundary, which can be vxmeu In terms of

&as: )
(a'n) (—-“b)i-I e v o o o (5.7)'
Using Eq. 30 i¢ follows that:
pat2LVTC oD gy

_ (1 + 3 '
which is the subsidiary éguadoen appropriste to

the zate case foran unlimited system, The inverse’

transformacion is_available from integral transform
tables. This result.divided by rp yields:

1 1) o
Pp(rp.tn)--'-; erfc 2 \/_ exp"(tpwp

-1)«::.-(2‘/_ + )] s+ o (39)

which is the dimeasionless pressuzesdrop distibu-
tion of an unlimited system. Upoa placiag 7 at
unity, Eq. 39 reduces to:

Pp =1 —explep)erfclef), . . v 1 (40)

which is the dim nonlnf’pcmure drop at the
internal boundary of an unlimited system.29,31,13, 14

At this jusceure some significade cbscevagions
can be made, First, the least uppei bound of the
dimensionless pressure drop is uairy. Coansequently,
under the conditions of conswmat rate the pressure
drop " at the intemsl boundusry.of an unlimited
spherical system can oever exceed s fixed finite
value. Secondly, the greatest lower bound of the
dimensicnless rate is also unity. Heace, the rate
engendeted by a single pressure drop imposed at
zeto time at the internal boundary of an unlimited

spherical syscem can never be less than & fixed .

non-vasishing value. In either situation, it appeacs
that an ualimited spherical reservoic system
appmncbel stesady-stace conditions as dimensionless
time assumes excessively laige, values. This
property, staangely enough, is not eajoyed by
unlimiced linear o cylindrical (radisl) systems, 2,5

- LOAITED SYSTEM WITH
CLOSED EXTERNAL BOUNDARY

In a limited zeservoir system the external

boundsry eventually coincides with a geometric

106

limic, At this limit, & system with a closed exteroal
boundary can sustain no fluid flow across it Hence,
the normel pressure derivative there must vanish,
Inwroduction of this condition into Xq. 15 ;Ivn:

';-'Cz[exp(-rm/i)-o(bwﬂl)expf Gp=2p
.ono'cco..o.o‘ovot.(‘

451
Under che precepes of the pressure cage and by
‘subsequent-coaversion to-hyperbolic funetions, Eq.
41 becomes:

7 3inhlyElp=rp)l=vE rpcostlysirp"rpl)
& = Tainklys Gy =13 7y cosblys by =11} °
...................(‘2)

which is :be subsidiary equaticn apptopam to the
pecssure case for a closed limited system. The
Laphcc tnansform of ep, using Eqs. 32 and 42, is:

' D -
V3lrp ~1coshly3ry =1+ (sep =1)sinh V5 (rp=1)}
slVs7pcosh [yE{rp 1)) -sinbly3 (ip =10}

B I T T I T ST RPN &)

The iriverse transformation of the zelstion may be
cbtained with the aid of Mellin’s inversion d:ecxem.
and s given by the fouovmg mu;ul in the
complex plane: .

3 Lim

5 -
)= T Bom ¥ explziplepdz, . . (44)

}r—is
which .for the function -at hand may be evalusted by
convesting it to a closed contour integral and thea
applying the calculus of sesidues. Thus, by virtue
of Ctucby s integral formula:

. y+S
27{ gf:. r{,‘s cz"’!'pdz -.;3"7 )c"c'""é'pdz

= R, +'§1R.. . (45)

wheze Rg is che residue comesponding to the
singularity at the origin and R, the residues
_conespoudmg to the orher sxaplu points. Evalua-
tion of Eq. 45 yields the dimensionless-fluid influx
rate for a closed limited spherical system, as

follows:
2
wee
ofats)

o.tuo.lco.o;o.-..o:(“‘)

" whiere w, are the roots of the equation:

. ™ w’r,,'2+(r,,-1)3
b* (’D-") wuy w ’D -(rp-l)

tan w -t 1
w - lpy=1)
The Laplace transform of Fp is:

cerate e @D
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- o
F, D = ? )
s2[y3rp'cosh /3 (rp=1) =~sinh V5 {rp 1))

c et e s e v e s s e e o(48)

By virtue of previcus arguments, the inverse
eransformation of Eq. 48 yields the dimensioaless
cumulscive fluid influx for'a closed limited system:
- e d 1 ” ’
Fp= Ryt T Ry= Gpo-1)
2

s -)
Twirg+,=1)3Y " 5s
—20p-n § AJZEOI DT |, w0
' wut w2 | w2ry=lrp=1)

B 7

where w,, ese also che roots of Eq. 47.2,10,11,13-18
Under the precepts of the zate case, Eg. 41
becomes, upoa conversion to hypérbolic fuactions:
b ' . ’
Vinp'cosh|y/5 (rg=rp)-sinh yE (rp'=rp)
#lValrg=1cosbyEly2)+ (sryDaich 3 lrp=1)]
B ¢ )}

whick is the subsidiary equation sppropriate to the

- rate-case for a closed limited aystem. As before,

the inverse transformation of Eq. S0 is given by the
sum of the residues, and since b is rppp, there
follows:

TABLE 1« UNLIMITED EYSTEM

ni {anl o1 1anl -t 1ant B 1anl i 1 1an}, O 1onl Oi ‘isnl o1 ion!
Time Reto tnflux PrassurecDrep Time Rete Influx Pressura-Drop
{tp) (e0) (Fo)  *  ©p Up) (ep) - o)

0.00Y 1884124 0.03568.  0.OMTY
0.002 1361566 0.05245  0.04953 0.0 107284 68,7 0.92595
0,003  11.30065 0.06430  0.08892 70,0 106743 79.4 0.93103
0006 992062 0.07536  0.06755 80.0 105308 90.1 0.93512
0005  $.97885 0.08479  0,07304 0.0 105947 100.7 0.93351
0.006 8.20246 0.09340  0.08174 100.0 1,03542 LLAR) 0.54129
0.007 7.74338 0.10141  0.08782 200.0 L0398 216.0 0.95703
0.008  2,30283 0.10893  0.09343 0.0 1.03257 30,0 096403
0.009 694308 0.11606 009865 400.0 202921 423,0 0.94835
0.00 6,64190 0.12284 0.10334 00,0 1,02523 5250 0,973
0.02 498942 0.17958  C.14182 ;gg-g :-ggg; ;z:g g~:7351
0,03 425735 0.22544  0.16894 . g f 197526
0.04 292095 0.26568  0.15098 ‘m-g :-g_:zf :::g g-”“‘
0.05 352313 030231 0.20962 g 8 47787
0,06 3.30329 023640  0.22588 1,000.0 101784 1,036.0 0.97588
0.07 313248 0,36388  0,24036 2,000.0 101262 2,050.0 0.98483
0.08 2990 039915 025348 3,000.0 101030 3,062.0 0.98714
0.09 2.88043 0.42851 0.26540 4,000,0 100892 4,071.0 0.98374
0.10 2.78432 0.45682 0.27642 5.000:0 1.00798 $,080.0 0.93984
0,30 203005 001808 ©  C.40798 7,000.0" 1.00674 2,094.0 0.99132
0.40 189205 131348 0.448639 $,000,0 100633 8,101.0 0.99185
0.50 179788 1L.29788 0. 47684 $,000.0 100898 9,107.0 0.99229
.80 172837 147404 0.30198 10,000,0 100364 10,113.6 0.99287
0.70 167634 L6407 C.523%0 :.&g 1.00399 20,160.0 0.99473
y 9 X 100328 20,195.0 0.99366
g oS ot o s £0000 10082 40,2260 099623
: 50,000,0 200252 ©  %0,232.0 0.99452
hed ooyt 1A uma 0,000, 10020 40,2760 0.99490
pys 132574 s o712 70,000.0 . 1.00213 70,299.0 099713
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where w, are heze the roots of:

cmw _ 1 o n’
w wz'm‘-....'.“OZ)
The expression embodied by Eq. S1 sepresents
the dimensionless peessuresdrop distributica for a
closed limited. spherical system. Upon placing rp
at unity and simplifying, there-follows at ence, the
dimensionless pressuze-dropat the intermal boundary:

’p = .
&r5-1)2*3r041[-‘f-(rp'-1)* @ r,;+_1)+zz,]
= p=02[f 50205

(rp'=1) ‘L(rp‘- D4 +2(rg-18 ro'+3rD'3]

- [ oa ’-1 2
=2y~ 2 w‘?: (:b _) ] T
ang Walwgrd*etrp *erpilXrp=~151
wit, C
I ¢ £

where u, are atill the soots of Eq. 52.

LIMITED SYSTEM
WITE OPZN REXTERNAL BOUNDARY

It will be zecalled that s limired reservoir
system is charicterized by. the samestment of
growth of ‘che extemal boundsry whes the latter
coincides with the geometric limit of the system..
Foe the case of an open boundary it is presumed
that ac chis limic (rg) the system suffers oo
pressure drop, Introduction of this condition Into
Eq. 15 pives: ’

e Gy lexp(=rpy3) ~explrp=2rs) V3] . . (50

Under che precepes of the pressure case sad
conversion to hyperbolic fuactions, Eq. 54 becomes:
-  sishy¥ (rg'=7p)

- -,.--‘...:55
t BV g -10] 6

which is the subsidiary equation appioptinte to the
pressure case for an open limited system. The
Leplsce cransform of ¢p using Eq. 55, is:

1 cosh 5 (r5’~1)

70'-74:m. PP ¢ 3]

The inverse tansfomation is available from integreal
tables in the form: .

1 l iﬂ’tp
Hn=l+ -1 94[2, (VD"-!)Z] v oo < (57)

and upon expanding the Theta function this becomes:
o -1 * -1 nxup (rp':l)z »- 68)
which is the dimensionless rate for an open limited
systen. As before, the Laplace transforms of Fp is:
z . o 1 cosh 3 (ry~1)
-
2" T 3T T SV sinh s Gp-10)

whose.inverse transformation was obtained with the
2id 6f the Faltung convolution theorem 43:

« « (59)

1, .
Fpry m a=m 4 = (r%~=1)
D el 3 D

2rp’=1) = 1 ﬂznztp
T .fiﬂz”"['(ro'-n? » e €0

the dimeasionless cumulative fluid influx for an
open limited system,9-11,13-20

Under “the precepts of the rate case, Eq. 54

becomes:

P 202 VE O5rp) 6D
sfy/Scosh 7 (ro'-lj-rxinh V3 (rpy=1)] v

" which is the subsidiasry equation appropeiate to the
zate case for a limited system with s fixed pressure
&t the extemi) boundary. The iaverse transformation
of Eq. 61 .was again obtained by Mellin’s inversion
theorem, ss previously explained. Thus, the
pressure-drop distribution is given by: .
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- TABLE 2 « LIMITED SYSTEMS
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(p) (sp) ) __op) ) {op) 15 op)
ot n""'":’g'.” Extornel Redivs 15 =2 ‘Dimensiontess Externet Redivs 75 = 5
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TABLE 2= LIMITED SYSTEMS (continved)
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Dimensionless Externa! Redivs _rS: : ”:o ,:"“ 36:2!6 0.8906
1.0 1.5642 ,1284 0.5724 £.0 11 47.43) 0.8955
2.0 1.3992 3.555¢8 0.8638 50,0 L1116 53,551 0.8987
3.0 13289 4958 £.712) 60.0 L1 69,885 0.8995
40 L2924 6,2646 0.7 0.0 L2 0777 0.8998
8.0 1229 5462 0.7618 30.0 m 91,389 0.8999
;.g };ggg 15'.3;33 g.};g; $0.0 S K111 103.000 - 0.9080
.:o 12836 137 7890 Dimsnsieniess Externel Redius rp,= 20
2.9 12519 12.9802 0.7927 2.0 L1030 36180 0.9977
10.0 12510 128316 ) 0.7952 £.0 10892 &2y 0.9106
200 1,2500 3333 0.7999 £,0 1.0792 X 093 -
200 12500 .8000 70&3 }.om 7‘3'}:3 g.ggs
Dimensionlens Extorne! Redlus v’y = 6 90.0 ‘;0“5“32 ”."2' 0:9351
20 L1989 | oAses 0.6438 0.0 10616 100,741 09382
3.0 1,329 49548 07126 100,0. 10595 111,346 0:9406
40 12032 62573 0.7444 200,0 10531 214.843 0.9485
80 12857 7.5258 0.7449 00,0 1.0527 822122 0:9495
4.0 12275 LI 0.7834 400, 10525 42386 0:9497
7.0 12252 10.0028 0.7957 00,0 1,0525 532849 0.9499
8.0 12170 102236 0. 600,0 10525 6372912 0.9500
9.0 12118 12,4377 0.8119
10.0 2077 12,6471 0.8172
. 20, 1,2001 6463 0.8324
30.0 1 17.6687 0.8333
40,0 1.2000 49,6867 0.8333
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where w, are the roots of the equation:

an w 1
— R - ——’
-1

Upen placing rp at uaity in Eq. 62 and simplifying,
che dimensionless preasure drop is obtained:

[ {2

=l 2]

'D
ko = 20p~1) E: 1, '(’D-I)ﬂv? (60

which is the concluding resuls.9-13,17

NUMERICAL COMPUTATION OF
PARTICULAR SOLUTIONS

Nine particular solutioas to Eq. 7 obtained with
the aid of the Laplzce transformation were pumesi-
cally computed, Specifically, these included the
functions defined by Eqs. 34, 36, 40, 45, 49, 53,

$8, 60 and 64,

The ical com 1 were carried out
with the aid of IBN 1401 and 1620 computer systems.
Programming was in FORTRAN, The fuactions for

TABLE 3 o LIMITED SYSTEMS (Continved)

Dimensisnless Funcilens

Dimansionloss Functions

Reto Influx Presswro Drap Time Rete influx Pressure Drop
tp) top) (Fp) p) (%) (o) ) o)
Oimensisniess Extornal Radivs 177 20 Oivansionless Externe! Radive r =70
©.0 10431 90.093 09383 700,08 L0213 70,0 0.9753
90.0 10398 100,708 0.9335 00,0 1,0200 $32.0 0.9767
1000 10584 111,284 09414 00,0 10190 934.0 0,971
200,0 1,041} 214,001 0.9576 1,000.0 10181 1,034.0 0.9795
0.0 0365 v 0.9629 2,000.9 1.0150 2.052.0 9338
0.0 1,015t 423,406 0.954% 3,000.8 10144 3,064. 0.9848
%0.0 1.0347 526,891 0.9456 4,000, © %0us :.ono 0.9353
20,0 10MS 30,351 0.9440 5,000,0 LoUS 3,095.0 0.9387
&g }.g:;:; zs;gg g.;::z 6,000.0 LOuUS 4,100 0.9857
X 32, X
00,0 #0345 940,701 0.9688 Cinenslenless Extornal Redive o= 80
1,000.8 LOMS 1,044,149 09667 . ;gg: 10188 2340 0.9779
Dimeasienless External Redivs v’ &» 2:000. {’g{g ;&,css.“g g::z;
100.0 10584 1.2 0.943¢ 3,000.0 L0129 30640 09852
0.0 10999 218,96 0.9570 4,000, X374 4,077.0 0.9848
200.0 10330 319,56 0.954¢ §,000,0 101277 ,090.0 0.9872
£00.0 10295 422,67 0.9486 6,000.0 0127 6,102.0 0.9375
$o00 bri] i o 7000 O e—— s.9es
0.0 10262 730,85 09729 Divwnsienless External Redivs 5= ”?
900.0 10259 233,47 X771 1,000, L0178 1,034 0,978
0.0 1.0258 938,08 0.9737 2,000, 10131 2,051, 0.9880
1,000.0 L0257 1,038.63 0.9739 2,000, L0118 3,063.0 0.9570
2,000.0 10256 ,064,28 0.9750 ;.x 1 ,l:g:u 4,076, 0.9373
Dimensisntsss Extornal Redlus 153 £.000.0 !.Olg “”“7:“, &::::
0.0 L0 21596 9570 7,000.,0 %0112 7,080 9889
ﬁg tnus 319,54 &:g} 9,000.0 L0312 81200 09820
200 x.gmm mm” 09718 Dimenzioniess External Redius e 00
0.0 1029 622.74 0.973¢ 1,000.0 L0178 1 0.9789
20.0 10237 73006 0.9754 2,000,0 10128 20510 0.934¢
800.0 10219 83220 0.9764 3,000.0 Lom 3,062.0 0.9974
%000 10214 934,46 [ X124 4,000,0 LIS 4,073.9 0.9895
1,800.0 ,0231 1,036.58 0.9775 5,000,0 10102 5,083.0 0.989)
2,600.0 2,057.15 9794 6,000.0 19101 $,004.0 0.9894
2800.0 10204 3,077.54 0.9000 Z:%g g}g} ..;w g.:m
. 9599
Dimensionless Externel Radivs rp = 60 9,000.0 10108 ':13‘-0 °.’=°°
300.0 L0326 31934 09641
£9.0 10282 422,57 09684
0.0 10253 09716
0.0 0232 $22.63 0.9748 .
7000 10216 7089 0.9258
00.0 10205 831,99 9272
00,0 10198 933.99 09783
1,600.0 L0189 1,035.91 0.9792
2,000.0 LN 053.3: 0.9822
3,000.9 10170 ,070.8 0.9829
£,000.0 10149 4,087.46 913

98



T

e o e I

<

the valimited system were computed first over the
dizeasionless time range 0.001 to 1,000,000, Then
cables of the wmigonometric relations described by
Eqs. 47, 52 and 63 were developed from which the
coots w, (with # « 6) wete obtained. Finally,
numerical values of the functions for limiced
systems were computed over the range of exteraal
adil (rp") 2 to 100. The range of dimensienless
cime (tp) for these functions was chosen o begin

with the points of divergence from the ualimited,

system eavelupe and to end with steady.state valyes,
These numerics] results ere included in tabular
form to fostes peactical application of this woek, -
NOMENCLATURE
Cy.Cy = acbitrary constants .
F = cuzvlstive fluid influx
Fp = dinensionless cumulative flnid iaflur
Fp = Laplace tansform of Fp .
Ry = tesidue of singularity at arigin
R, = tesidues of aingularities sz z,
b = dimensionless product of pressure drop
and radial distance
e Laplace cransform of b
¢ = compressibility
¢ = rate of fluid influx or fluid raze
¢p = dimensicnless rate of fluid influx
#p = Laplace mansforn of ¢p
k = permesbilicy
&; = horizontal permeabilicy
k, = radial permeability in spherical system
&, = vertical permeability
n « element of demain of positive integers
P = pressure
#; = icitial pressuce
¢p = dimensionless pressure drop
r = radial diszance, leagth of radius vector of
sphere
re = radius of extemal boundasy
r, = radius of intemal boundary
7p = dimensionless radial distance
75 = dimensioaless radius of extemal boundery
# = Laplace wansform parameter, a complex
variable
¢ = time
¢, = readjusement time
fp = dimensioaless time
t’ = maximom time
u = macroscopic velocity in porous media
w = achitrary eeal varisble
x = complex variable
a » colacitude angle, spherical coordinazes
y = sbiacissa of convergence
& = acbitrary parameter
8 = longimdinal asgle, apherics! coordinates
64 = Jacobian thets function, also desoted by
90 or @

# = viscosity
@ = porosity
42 « cumulative preasure drop
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ellipsoid. The equivalent inner radius of this "rugby ball" will depend on the
dimensionless time. At early time, it will be a function of its surface area, just as it is for
all other geometries, while at later times it will depend on the equivalent flow resistance of
an ellipsoid. To the best of my knowledge, these equations have not been worked out for
this geometry.

Chatas’ solutions are listed in voluminous tables. Some of the nomenclature in his

tables is different than we now use. His rate of influx is labeled, ep , while we now use
gp(tp) . His cumulative influx is labeled Fp , while we now use Qp(tp) . In his
table for the infinite system, he lists e, which is gp (tp) , Fp, whichis Qp(¢p) , and

pp- He shows that there are simple equations for these terms. They are,

ap(tp) =1+(mtp)~1/? (77)

Op(tp) =tp +2(tp I M)/? (78)
and

pp(tp) =1-exp(tp)erfe (24?2 (79)

So it really wasn’t necessary to list these values. Equations 77 and 78 are very
easy to evaluate. Equation 79, the most complex one, can be evaluated using various
simple closed form approximations which are valid at various times, and which are listed
in Abramowitz and Stegun’s book (1964).

Chatas also lists results for finite systems with closed exterior boundaries in his
Table 2, and constant pressure exterior boundaries in Table 3. Based on the work we
have done for the linear and radial systems, we would expect that these tables could also
be handled with simple analytic solutions. For example, in his Table 2, the closed
boundary influx rates and cumulative influxes follow the exponential decline equation.
While at constant rate the pressure drop increases linearly with time, according to material
balance principles. His Table 3 lists the results for the constant pressure external
boundary. Those, too, behave as we would anticipate, obeying Darcy’s Law at late times.

I am positive that it would be possible to develop simple appropriate equations to

handle these closed systems, just as we did for the linear and radial cases. However, I am
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not going to do this, for I've seldom seen field cases where the spherical geometry is
required. If any reader does run into this geometry, it would be wise to spend the time
needed to develop the appropriate approximate equations for his system, for this effort
would greatly simplify his resulting calculational prodedures.

Conclusions

We've seen that the results of all three geometries (linear, radial and spherical) can
be put into simple approximately exact equation forms. These equation forms are all
logical, based on an analysis of the physics of flow in the systems. Thus for all the
possible inner and outer boundary conditions (Inner Boundary; constant rate or constant
pressure: Outer Boundary; infinite, constant pressure or closed) the solutions all behave in
a logical manner.

The linear and spherical systems behave in similar ways. The reason is that the
spherical equation can be transformed into a differential equation form that is identical to
the linear system. A new variable, bp , which is defined as follows, bp =rppp »
changes the spherical differential equation into the same format as the linear equation. As
a result both geometries show a square root of time relationship for the infinite system for
predicting cumulative encroachment with time. For the linear system, the pressure
prediction is also proportional to the square root of time. While for the spherical system,
the equation is slightly more complex, but still simple.

For the infinite radial systems, the very early time data also follow square root of
time behavior. For a limited time, simple empirical extensions of this idea are valid for
either the constant pressure or constant flow rate inner boundary.

The very long time behavior of the infinite radial systems are also logical, being
functions of the logarithm of time. Simple empirical adjustements to these late time results
are shown for both the constant pressure and constant flow rate inner boundary.

For all the finite systems, either a constant pressure or a closed outer boundary can

be assumed. The early time data for these systems all follow the infinite curves. It
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possible to define simple equations for the times when this short time behavior is no longer
valid. As might be expected, these equations are functions of the sizes of the systems.

Once the outer boundary begins to be felt, the equations, for all practical purposes,
jump immediately to the long time form expected for that geometry and boundary
condition. For example, for a constant pressure inner and outer boundary, the cumulative
influx varies linearly with time, following the steady state Darcy equation. Similarly, for
the constant rate inner boundary and a closed outer boundary, the pseudosteady state
equations define the linear pressure decline behavior. These statements are true for all
three geometries.

By comparison, for a constant rate inner boundary and constant pressure outer
boundary, exponential decline behavior is seen. The pressure history is a logarithmic
function of dimensionless time. At infinite time the pressure drop is constant, fitting
Darcy’s Law. Thus on the logarithmic coordinate we graph, pp(e)—pp(tp) , to
depict this exponential behavior.

Similarly, for the constant pressure inner boundary and the closed outer boundary,
we also see exponential behavior. This, too, has a limit at infinite time, Qp) (o) , which is
defined by the geometry. The variable graphed on the arithmetic coordinate is again the
dimensionless time, while the logarithmic coordinator is Qp(e0)-QOp(tp) -

Thus we've seen that the exact infinite series solutions can be transformed into very
accurate closed form approximations which make calculations much easier, and which also
give great insight into the behavior of the various solutions. Weve also seen that
superposition is an important way of handling real data which vary both in pressure and
flow rate with time. Many times, the approximate equations can be used to greatly
simplify the superposition calculations. Further notes on this subject will discuss how to
relate these ideas to reservoir/aquifer combinations, the ultimate goal for reservoir

engineering applications.
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